
阿里云

Blink
Blink Exclusive Mode (Phased-

Out for Alibaba Cloud)

Document Version: 20231114

阿里云

Blink
Blink Exclusive Mode (Phased-

Out for Alibaba Cloud)

Document Version: 20231114

Legal disclaimer
Alibaba Cloud reminds you to carefully read and fully understand the terms and conditions of this
legal disclaimer before you read or use this document. If you have read or used this document, it shall
be deemed as your total acceptance of this legal disclaimer.

1. You shall download and obtain this document from the Alibaba Cloud website or other Alibaba
Cloud-authorized channels, and use this document for your own legal business activities only.
The content of this document is considered confidential information of Alibaba Cloud. You shall
strictly abide by the confidentiality obligations. No part of this document shall be disclosed or
provided to any third party for use without the prior written consent of Alibaba Cloud.

2. No part of this document shall be excerpted, translated, reproduced, transmitted, or
disseminated by any organization, company or individual in any form or by any means without
the prior written consent of Alibaba Cloud.

3. The content of this document may be changed because of product version upgrade, adjustment,
or other reasons. Alibaba Cloud reserves the right to modify the content of this document
without notice and an updated version of this document will be released through Alibaba Cloud-
authorized channels from time to time. You should pay attention to the version changes of this
document as they occur and download and obtain the most up-to-date version of this document
from Alibaba Cloud-authorized channels.

4. This document serves only as a reference guide for your use of Alibaba Cloud products and
services. Alibaba Cloud provides this document based on the "status quo", "being defective",
and "existing functions" of its products and services. Alibaba Cloud makes every effort to
provide relevant operational guidance based on existing technologies. However, Alibaba Cloud
hereby makes a clear statement that it in no way guarantees the accuracy, integrity,
applicability, and reliability of the content of this document, either explicitly or implicitly. Alibaba
Cloud shall not take legal responsibility for any errors or lost profits incurred by any organization,
company, or individual arising from download, use, or trust in this document. Alibaba Cloud shall
not, under any circumstances, take responsibility for any indirect, consequential, punitive,
contingent, special, or punitive damages, including lost profits arising from the use or trust in
this document (even if Alibaba Cloud has been notified of the possibility of such a loss).

5. By law, all the contents in Alibaba Cloud documents, including but not limited to pictures,
architecture design, page layout, and text description, are intellectual property of Alibaba Cloud
and/or its affiliates. This intellectual property includes, but is not limited to, trademark rights,
patent rights, copyrights, and trade secrets. No part of this document shall be used, modified,
reproduced, publicly transmitted, changed, disseminated, distributed, or published without the
prior written consent of Alibaba Cloud and/or its affiliates. The names owned by Alibaba Cloud
shall not be used, published, or reproduced for marketing, advertising, promotion, or other
purposes without the prior written consent of Alibaba Cloud. The names owned by Alibaba Cloud
include, but are not limited to, "Alibaba Cloud", "Aliyun", "HiChina", and other brands of Alibaba
Cloud and/or its affiliates, which appear separately or in combination, as well as the auxiliary
signs and patterns of the preceding brands, or anything similar to the company names, trade
names, trademarks, product or service names, domain names, patterns, logos, marks, signs, or
special descriptions that third parties identify as Alibaba Cloud and/or its affiliates.

6. Please directly contact Alibaba Cloud for any errors of this document.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Legal disclai

mer

> Document Version: 20231114 I

Document conventions
Style Description Example

 Warning
You can use this note type to provide
information of which the user must
take special notice to prevent risks or
service interruptions, such as
precautions and prerequisites.

 Warning

A restart operation may cause a
temporary service interruption.
We recommend that you
perform a restart during off-
peak hours or after data is
backed up. You can also
contact Alibaba Cloud technical
support.

Important

You can use this note type to provide
information that does not involve risks
but is necessary to know for an
operation, such as subsequent
operations and limitations.

 Important

When you log on to the system
again, you must set a new
password for your logon
account.

 Note You can use this note type to provide
information that is simply good-to-
know, such as best practices and tips.

 Note

You can press Ctrl+A to select
all files.

>
Closing angle brackets are used to
indicate a multi-level menu cascade. Click Settings> Network> Set

network type.

Bold
Bold formatting is used for buttons ,
menus, page names, and other UI
elements.

Click OK.

Courier font Courier font is used for commands Run the cd /d C:/window command to
enter the Windows system folder.

Italic Italic formatting is used for parameters
and variables.

bae log list --instanceid

Instance_ID

[] or [a|b]
This format is used for an optional
value, where only one item can be
selected.

ipconfig [-all|-t]

{} or {a|b}
This format is used for a required
value, where only one item can be
selected.

switch {active|stand}

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Document co

nventions

> Document Version: 20231114 I

Table of Contents
1.Release notes

1.1. Blink-3.7.10
1.2. Blink 3.7.9
1.3. Blink-3.7.7
1.4. Blink-3.6.8
1.5. Blink-3.6.5
1.6. Blink 3.6.2
1.7. Blink-3.6.0
1.8. Blink-3.5.0-hotfix
1.9. Blink 3.4.4
1.10. Blink-3.4.3
1.11. Blink 3.3.0
1.12. Blink 3.2.3
1.13. Blink 3.2.1

1.13.1. Blink 3.2.1 release notes
1.13.2. API compatibility report: Blink 3.2 and Flink 1.5.1
1.13.3. Incompatible SQL items: Blink 3.0 and Blink 2.0

2.Product Introduction
2.1. Overview
2.2. Development history
2.3. Workflow
2.4. Upstream and downstream data stores
2.5. Product security
2.6. Limits
2.7. Architecture of Realtime Compute for Apache Flink in exclusive mode (phased-out) …

3.Pricing

17

17

17

17

18

18

19

19

20

20

20

23

24

25

25

26

28

30

30

34

35

37

38

39

40

43

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Table of Cont

ents

> Document Version: 20231114 I

3.1. Billing unit
3.2. Billing methods
3.3. Specification selection
3.4. Renewal

3.4.1. Manual renewal
3.4.2. Auto-renewal

3.5. Change resource configurations
4.Preparation

4.1. Grant permissions to a RAM user
4.2. Activate Realtime Compute for Apache Flink and create a project …
4.3. Role authorization

4.3.1. Assign a RAM role to an account that uses Realtime Compute for Apache Flink in exclusive mode …
5.Blink SQL reference

5.1. Overview
5.2. Keywords
5.3. Basic concepts

5.3.1. Time zone
5.3.2. Time attributes
5.3.3. Watermark
5.3.4. Computed column

5.4. Data types
5.4.1. Data type conversion
5.4.2. Mathematical and logical operations between data types …

5.5. Create a data view
5.6. DDL statements

5.6.1. Overview
5.6.2. Create a source table

5.6.2.1. Overview of source tables

43
43

45

47

47

47

48

51

51

52

56

56

61

61

61

63

63

65

68

69

70

70

72

73

75

75

78

78

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Table of Cont
ents

Blink

II > Document Version: 20231114

5.6.2.2. Create an Oracle database source table
5.6.2.3. Create a Hologres source table
5.6.2.4. Create a Log Service source table
5.6.2.5. Create a source table
5.6.2.6. Create a Message Queue for Apache Kafka source table …
5.6.2.7. Create a Tablestore source table
5.6.2.8. Create a full MaxCompute source table
5.6.2.9. Create an incremental MaxCompute source table

5.6.3. Create a result table
5.6.3.1. Overview of result tables
5.6.3.2. Create an Oracle database result table
5.6.3.3. Create a Hologres result table
5.6.3.4. Create an AnalyticDB for MySQL V2.0 result table
5.6.3.5. Create a Log Service result table
5.6.3.6. Create a result table
5.6.3.7. Create a Tablestore result table
5.6.3.8. Create an ApsaraDB RDS result table
5.6.3.9. Create a MaxCompute result table
5.6.3.10. Create an ApsaraDB for HBase result table
5.6.3.11. Create an Elasticsearch result table
5.6.3.12. Create a TSDB result table
5.6.3.13. Create a Message Queue for Apache Kafka result table …
5.6.3.14. Create a HybridDB for MySQL result table
5.6.3.15. Create an ApsaraDB RDS for SQL Server result table …
5.6.3.16. Create an ApsaraDB for Redis result table
5.6.3.17. Create an ApsaraDB for MongoDB result table
5.6.3.18. Create an AnalyticDB for MySQL V3.0 result table …
5.6.3.19. Create a custom result table

81

85

88

94

100

117

120

127

133

133

133

136

142

145

148

153

155

161

168

173

177

180

183

185

191

195

196

199

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Table of Cont

ents

> Document Version: 20231114 III

5.6.3.20. Create a Phoenix5 result table
5.6.3.21. Create an AnalyticDB for PostgreSQL result table
5.6.3.22. Create an InfluxDB result table

5.6.4. Create a dimension table
5.6.4.1. Overview
5.6.4.2. Create a Hologres dimension table
5.6.4.3. Create a Tablestore dimension table
5.6.4.4. Create an ApsaraDB RDS for MySQL dimension table …
5.6.4.5. Create an ApsaraDB for HBase dimension table
5.6.4.6. Create a MaxCompute dimension table
5.6.4.7. Create an ApsaraDB for Redis dimension table
5.6.4.8. Create an Elasticsearch dimension table
5.6.4.9. Create a Phoenix5 dimension table
5.6.4.10. Create an AnalyticDB for MySQL V3.0 dimension table …
5.6.4.11. Create an Oracle database dimension table

5.7. DML statement
5.7.1. EMIT statements
5.7.2. INSERT INTO statements

5.8. Query statements
5.8.1. SELECT statements
5.8.2. WHERE
5.8.3. HAVING statement
5.8.4. GROUP BY statement
5.8.5. JOIN statements
5.8.6. JOIN statements for dimension tables
5.8.7. IntervalJoin statement
5.8.8. UNION ALL
5.8.9. TopN

205

207

210

212

212

214

218

221

227

234

242

245

247

251

256

259

259

263

264

264

266

267

268

268

271

273

278

279

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Table of Cont
ents

Blink

IV > Document Version: 20231114

5.8.10. GROUPING SETS clause
5.8.11. CEP statements
5.8.12. Deduplication statements

5.9. Window functions
5.9.1. Overview
5.9.2. TUMBLE
5.9.3. HOP
5.9.4. SESSION
5.9.5. OVER windows

5.10. Built-in functions
5.10.1. String functions

5.10.1.1. REGEXP_EXTRACT
5.10.1.2. REGEXP_REPLACE
5.10.1.3. REPEAT
5.10.1.4. REPLACE
5.10.1.5. REVERSE
5.10.1.6. RPAD
5.10.1.7. SPLIT_INDEX
5.10.1.8. STR_TO_MAP
5.10.1.9. SUBSTRING
5.10.1.10. TO_BASE64
5.10.1.11. TRIM
5.10.1.12. UPPER
5.10.1.13. CHAR_LENGTH
5.10.1.14. CHR
5.10.1.15. CONCAT
5.10.1.16. CONCAT_WS
5.10.1.17. FROM_BASE64

285

286

293

295

295

297

301

304

306

314

314

314

316

317

318

319

319

321

322

323

324

325

325

326

327

328

329

330

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Table of Cont

ents

> Document Version: 20231114 V

5.10.1.18. HASH_CODE
5.10.1.19. INITCAP
5.10.1.20. INSTR
5.10.1.21. JSON_VALUE
5.10.1.22. KEYVALUE
5.10.1.23. LOWER
5.10.1.24. LPAD
5.10.1.25. MD5
5.10.1.26. OVERLAY
5.10.1.27. PARSE_URL
5.10.1.28. POSITION
5.10.1.29. REGEXP

5.10.2. Mathematical functions
5.10.2.1. Addition
5.10.2.2. Subtraction
5.10.2.3. Multiplication
5.10.2.4. Division
5.10.2.5. ABS
5.10.2.6. ACOS
5.10.2.7. BIN
5.10.2.8. ASIN
5.10.2.9. ATAN
5.10.2.10. BITAND
5.10.2.11. BITNOT
5.10.2.12. BITOR
5.10.2.13. BITXOR
5.10.2.14. CARDINALITY
5.10.2.15. CONV

330

331

332

333

334

335

336

338

338

339

340

341

342

342

343

343

344

345

345

346

347

348

349

349

350

351

352

352

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Table of Cont
ents

Blink

VI > Document Version: 20231114

5.10.2.16. COS
5.10.2.17. COT
5.10.2.18. EXP
5.10.2.19. E
5.10.2.20. FLOOR
5.10.2.21. LN
5.10.2.22. LOG
5.10.2.23. LOG10
5.10.2.24. LOG2
5.10.2.25. PI
5.10.2.26. POWER
5.10.2.27. RAND
5.10.2.28. SIN
5.10.2.29. SQRT
5.10.2.30. TAN
5.10.2.31. CEIL
5.10.2.32. CHARACTER_LENGTH
5.10.2.33. DEGREES
5.10.2.34. MOD
5.10.2.35. ROUND

5.10.3. Date functions
5.10.3.1. LOCALTIMESTAMP
5.10.3.2. CURRENT_DATE
5.10.3.3. CURRENT_TIMESTAMP
5.10.3.4. DATEDIFF
5.10.3.5. DATE_ADD
5.10.3.6. DATE_FORMAT
5.10.3.7. DATE_SUB

353

354

355

356

356

357

358

359

360

360

361

362

362

363

364

365

365

366

367

367

369

369

369

370

370

371

372

373

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Table of Cont

ents

> Document Version: 20231114 VII

5.10.3.8. DAYOFMONTH
5.10.3.9. EXTRACT
5.10.3.10. FROM_UNIXTIME
5.10.3.11. HOUR
5.10.3.12. LOCALTIME
5.10.3.13. MINUTE
5.10.3.14. MONTH
5.10.3.15. NOW
5.10.3.16. SECOND
5.10.3.17. TIMESTAMPADD
5.10.3.18. TO_DATE
5.10.3.19. TO_TIMESTAMP
5.10.3.20. UNIX_TIMESTAMP
5.10.3.21. WEEK
5.10.3.22. YEAR

5.10.4. Logical functions
5.10.4.1. =
5.10.4.2. >
5.10.4.3. >=
5.10.4.4. <=
5.10.4.5. <
5.10.4.6. <>
5.10.4.7. AND
5.10.4.8. BETWEEN AND
5.10.4.9. IS NOT FALSE
5.10.4.10. IS NOT NULL
5.10.4.11. IS NOT TRUE
5.10.4.12. IS NOT UNKNOWN

374

375

376

377

378

378

379

380

381

382

383

384

385

386

387

388

388

389

390

390

391

392

393

393

395

396

397

397

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Table of Cont
ents

Blink

VIII > Document Version: 20231114

5.10.4.13. IS NULL
5.10.4.14. IS TRUE
5.10.4.15. IS UNKNOWN
5.10.4.16. LIKE
5.10.4.17. NOT
5.10.4.18. NOT BETWEEN AND
5.10.4.19. IN
5.10.4.20. OR
5.10.4.21. IS DISTINCT FROM
5.10.4.22. IS NOT DISTINCT FROM
5.10.4.23. NOT IN

5.10.5. Conditional functions
5.10.5.1. CASE WHEN
5.10.5.2. COALESCE
5.10.5.3. IF
5.10.5.4. IS_ALPHA
5.10.5.5. IS_DECIMAL
5.10.5.6. IS_DIGIT
5.10.5.7. NULLIF

5.10.6. Table-valued functions
5.10.6.1. GENERATE_SERIES
5.10.6.2. JSON_TUPLE
5.10.6.3. STRING_SPLIT
5.10.6.4. MULTI_KEYVALUE

5.10.7. Type conversion function
5.10.7.1. CAST

5.10.8. Aggregate functions
5.10.8.1. AVG

398

399

400

401

402

403

405

405

406

407

408

409

409

410

411

412

413

414

415

416

416

417

418

419

420

420

421

421

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Table of Cont

ents

> Document Version: 20231114 IX

5.10.8.2. CONCAT_AGG
5.10.8.3. COUNT
5.10.8.4. FIRST_VALUE
5.10.8.5. LAST_VALUE
5.10.8.6. MAX
5.10.8.7. MIN
5.10.8.8. SUM
5.10.8.9. VAR_POP
5.10.8.10. STDDEV_POP

5.10.9. Other functions
5.10.9.1. UUID
5.10.9.2. DISTINCT

5.11. UDXs
5.11.1. Overview
5.11.2. UDF
5.11.3. UDAF
5.11.4. UDTF
5.11.5. Develop a UDX by using IntelliJ IDEA

6.Blink SQL Development Guide
6.1. Overview
6.2. Data storage

6.2.1. Overview
6.2.2. Data storage resource registration

6.2.2.1. Register an AnalyticDB for MySQL instance
6.2.2.2. Register a Tablestore instance
6.2.2.3. Register an ApsaraDB for RDS instance
6.2.2.4. Register a Log Service project

6.2.3. Configure a whitelist for accessing storage resources

422

423

424

425

428

429

429

430

431

432

432

433

436

436

440

443

448

453

458

458

458

458

462

462

463

464

465

467

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Table of Cont
ents

Blink

X > Document Version: 20231114

6.3. Job development
6.3.1. Develop a job
6.3.2. Publish a job
6.3.3. Start a job
6.3.4. Suspend a job
6.3.5. Terminate a job

6.4. Job debugging
6.4.1. Perform local debugging
6.4.2. Online debugging

6.5. Job administration
6.5.1. Go to the Job Administration page
6.5.2. Overview
6.5.3. Metrics
6.5.4. Timeline
6.5.5. Failover
6.5.6. Checkpoints
6.5.7. JobManager
6.5.8. TaskExecutor
6.5.9. Data lineage
6.5.10. Properties and parameters
6.5.11. Job diagnosis

6.6. Job optimization
6.6.1. Overview
6.6.2. Recommended Flink SQL practices
6.6.3. Performance optimization by using automatic configuration …
6.6.4. Performance optimization by using auto scaling
6.6.5. Optimize performance by manual configuration
6.6.6. Typical backpressure scenarios and optimization ideas …

467

467

471

471

472
472

473

473

477

479

479

479

483

488

488

489

490

491

492

494

495

495

495

496

505

513

518

526

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Table of Cont

ents

> Document Version: 20231114 XI

6.6.7. SQL Tuning Advisor
6.6.7.1. Partitioned All Cache
6.6.7.2. miniBatch and microBatch
6.6.7.3. Cache policy
6.6.7.4. Asynchronous mode
6.6.7.5. APPROX_COUNT_DISTINCT
6.6.7.6. Local-global optimization
6.6.7.7. ROW_NUMBER OVER WINDOW
6.6.7.8. Partial-final optimization

6.7. Monitoring and alerting
6.8. Customize log levels and download paths
6.9. Manage Blink versions of a Realtime Compute for Apache Flink cluster deployed in exclusive mode …
6.10. Monitoring and alerting

7.Blink Datastream Development Guide
7.1. Overview
7.2. Configure a whitelist for accessing storage resources
7.3. Set custom parameters
7.4. Monitoring
7.5. Develop a job
7.6. Publish a job
7.7. Develop a job
7.8. Example of DataStream jobs

7.8.1. Read data from DataHub
7.8.2. Read data from Message Queue for Apache Kafka
7.8.3. Read data from DataHub and write data to ApsaraDB for HBase …
7.8.4. Read data from Log Service

8.Best Practices
8.1. Best practices of Realtime Compute in the e-commerce industry …

529

530

531

531

534

537

538

539

541

542

543

546

549

550

550

551

551

552

553

555

558

558

558

562

564

568

571

571

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Table of Cont
ents

Blink

XII > Document Version: 20231114

8.1.1. Real-time PV and UV curves in e-commerce scenarios …
8.1.2. Marketing coupons in e-commerce scenarios
8.1.3. Real-time situation awareness and geographic distribution of orders in e-commerce scenarios …
8.1.4. Latest transaction records in e-commerce scenarios

8.2. Best practices of Realtime Compute in the live streaming industry …
8.2.1. Core video metric monitoring for live streaming
8.2.2. Digital operations for live streaming

9.Agreements
9.1. Realtime Compute for Apache Flink Service Level Agreement …

571

576

582

585

588

588

593

599

599

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Table of Cont

ents

> Document Version: 20231114 XIII

This topic describes major updates and bug fixes in Blink 3.7.10.

Major updates
The underlying client dependency of Message Queue for Apache RocketMQ connectors is
upgraded. Therefore, you must change the value of the endpoint parameter in all the DDL
statements in which the type parameter is set to mq to the TCP internal endpoint of Message
Queue for Apache RocketMQ. For more information, see Announcement on the settings of
internal TCP endpoints.

Major bug fixes
Fixes the defect of AutoScale.

This topic describes the major features and bug fixes in Blink 3.7.9.

Major features
Partitioned join is supported for dimension tables.

Note
If the upstream data is Update Stream, the unique key of the upstream must
contain the shuffle key when you perform a common partitioned join operation.
This ensures the correctness of semantics.
If you enable partitioned join for dimension tables, hot spot issues may occur.
Bucket partitioned join is introduced to address this issue. However, you cannot
perform the bucket partitioned join operation if the upstream data is Update
Stream. During the bucket partitioned join operation, the source table calculates
and determines the concurrency for each data record and spreads each data
record to a bucket in the downstream. Meanwhile, the dimension table caches
each data record in the bucket to scatter hot spot data.

Major bug fixes
Fixes the bug that the checkpoint file is deleted by mistake because FileSegmentStateHandle
is not registered with GeminiKeyedStateHandle.

This topic describes the major features and bug fixes in Blink 3.7.7.

Major bug fixes
Fixes the bug that causes job checkpoints to occupy excessively large storage space.
Fixes the bug that causes the residual file cleanup mechanism to delete checkpoint files by
mistake.
Fixes the bug that causes Blink to be unable to use Hologres physical tables with schemas.

1.Release notes
1.1. Blink-3.7.10

1.2. Blink 3.7.9

1.3. Blink-3.7.7

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Release note

s

> Document Version: 20231114 17

https://www.alibabacloud.com/help/en/apsaramq-for-rocketmq/product-overview/announcement-on-the-settings-of-internal-tcp-endpoints#concept-2351917

This topic lists the major improvements and bug fixes in Blink 3.6.8.

Major improvements
Improves the performance of writing data to Time Series Database (TSDB).
Improves the performance of writing data to AnalyticDB for PostgreSQL.
Sets the connection timeout period of Tablestore to 20s.

Major bug fixes
Fixes the bug in which a failed job cannot resume during auto scaling.
Fixes the bug that causes the NullPointerException error in a result table of AnalyticDB for
MySQL V2.0.
Fixes the bug that causes the ArrayIndexOutOfBoundsException error in jobs that use a
RetracRank operator.
Fixes the bug that causes data exceptions when a job that uses a RetracRank operator
constantly receives the same retract message.
Fixes the bug in which data is lost when you use Tunnel Service to read incremental data
from a Tablestore source table after a full read.

This topic describes major updates and bug fixes in Blink 3.6.5.

Major updates
The CPU utilization of DataHub source tables is reduced.
The partition join feature of dimension tables is improved, and data can be loaded to
partitions in dimension tables for which the cache parameter is set to ALL. This version
supports parallel asynchronous optimization for multiple dimension tables. To enable the
partition join feature for dimension tables that support parallel asynchronous optimization,
you must set the partitionedJoin parameter to true in the WITH clause.
The startupMode parameter is added to Log Service source tables. The startupMode
parameter has the following valid values:

TIMESTAMP: indicates that data of a shard is consumed from the specified point of time.
Earliest: indicates that data of a shard is consumed from the earliest data in the shard.
Latest: indicates that data of a shard is consumed from the latest data in the shard.
Group_Offsets: indicates that data of a shard is consumed from a checkpoint that is
stored in a specific consumer group.

Note The TIMESTAMP, Earliest, Latest, and Group_Offsets values take effect only
when no checkpoint exists in the state data.

The memory consumed to store vertex topology information is reduced for jobs that
involve a large amount of data.
The timeFieldType parameter in Oracle source tables supports multiple time formats. This
parameter has the following valid values:

TO_DATE: the DATE type.
TIMESTAMP: the TIMESTAMP type.
VARCHAR: the DATETIME string type.
NUMBER: the NUMERIC type.

1.4. Blink-3.6.8

1.5. Blink-3.6.5

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Release note
s

Blink

18 > Document Version: 20231114

The OracleSourceQueryCondition interface is supported and a class name is configured
for the interface.

Major bug fixes
Fixes the bug that data errors occur in MaxCompute dimension tables if a TaskManager
uses multiple threads and the partition join feature is enabled.
Fixes the bug that an error message is reported when the DDL field type of the sink node is
different from the type of the inserted data.
Fixes the bug that Realtime Compute for Apache Flink does not consume data in Log
Service source tables.

This topic lists the major features and bug fixes in Blink 3.6.2.

Major features
Optimizes the auto scaling feature so that scale-down operations are triggered for jobs with
no traffic. This reduces resource consumption.
Optimizes resource rescaling.
Optimizes data parsing of the Log Service connector. The FastLogGroup method is used to
parse data.
Reduces the memory consumed to store vertex topology information for jobs that involve a
large amount of data.

Major bug fixes
Fixes the bug that Blink cannot consume the accumulated data in a Tablestore source
table.
Fixes the bug that NullPointException occurs when the cache parameter is set to ALL for a
dimension table.
Fixes the bug that a MaxCompute sink cannot submit data to a dynamic partition.

This topic describes major updates and bug fixes in Blink 3.6.0.

Major updates
The following connectors are added: AnalyticDB for PostgreSQL, Phoenix5, and Hologres.
For more information, see the following topics:

Create an AnalyticDB for PostgreSQL result table
Create a Phoenix5 dimension table
Create a Hologres source table
Create a Hologres dimension table
Create a Hologres result table

The following features are added:
Keys can be written to Message Queue result tables in the CSV format, but cannot be
written to Message Queue result tables in the binary format.
Gemini 2.0 (Gemini enhanced edition) is supported.

Major bug fixes
The bugs that cause the following issues are fixed:

1.6. Blink 3.6.2

1.7. Blink-3.6.0

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Release note

s

> Document Version: 20231114 19

The following syntax error of a Kafka08 result table is reported: Kafka dont have
sufficient arguments .
A failover occurs because the node of a Tablestore source table is running online but a
partition of the source table does not have data. Error: java.lang.NullPointerException .
A failover occurs because a Tablestore dimension table is referenced by using registered
storage resources but the token expires. Error: OTSNoPermissionAccess, [Message]:You have
no permission to access the requested resource, please contact the resource owner .

This topic describes major updates and bug fixes in Blink 3.5.0.

Major updates
You are allowed to create an InfluxDB result table. For more information, see Create an
InfluxDB result table.
You are allowed to create a Phoenix5 result table. For more information, see Create a
Phoenix5 result table.
The SDK version of DataHub connectors is updated.

Major bug fixes
Fixes the bug that no error message is returned when you use a global ORDER BY clause.
Fixes the bug that a behavior-related error message is returned when you implicitly convert
the VARCHAR data type at the underlying layer into an integer data type.
Fixes the bug that exceptions occur in computing results when data is aggregated based on
the time due to a calcite bug.
Fixes the bug that the error message of java.lang.NoClassDefFoundError:
com/aliyun/datahub/client/auth/Account is reported when you check the syntax of
DataHub source tables.

This topic lists the major features and bug fixes in Blink 3.4.4.

Major improvements
Blink 3.4.4 supports reading data from the new partitions of MaxCompute source tables. You
can specify the subscribeNewPartition parameter in the DDL statement to enable or
disable this feature. If the subscribeNewPartition parameter is set to true and the partition
parameter is not specified, the system constantly reads data from the new partitions of
MaxCompute source tables. For more information, see Create a full MaxCompute source
table.

Major bug fixes
Fixes ApsaraDB RDS connection issues. Blink uses the Druid database connection pool to
connect to ApsaraDB RDS. If the connection is not used for a long period of time, job failovers
may occur. To avoid these issues, Blink 3.4.4 optimizes the method of connecting the Druid
connection pool to ApsaraDB RDS.

This topic describes the major features and bug fixes in Blink 3.4.3.

Major features

1.8. Blink-3.5.0-hotfix

1.9. Blink 3.4.4

1.10. Blink-3.4.3

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Release note
s

Blink

20 > Document Version: 20231114

Major features
GeminiStateBackend is the new generation of a backend platform that uses GeminiDB.
GeminiDB is a storage engine developed by Alibaba Cloud. The performance of
GeminiStateBackend is 1.5 times that of NiagaraStateBackend. This performance rating is
based on tests that are performed on running jobs. GeminiStateBackend has the following
major benefits:

Uses LSM-based indexing and hash indexing. LSM refers to log-structured merge-tree. LSM
is adopted to improve write performance, and hash indexes are stored in memory to
optimize LSM read amplification. Specifically, GeminiDB divides each file into different
pages, and flushes and compresses data by page. Hash indexes are used to quickly locate
the page where the data is stored based on keys. This way, the number of I/O operations is
reduced and read performance is improved.
Optimizes the cache policy. GeminiDB caches important information in memory, such as
newly inserted data and compressed data that includes hotspots. For traditional LSM-based
storage, the data is first flushed to disks. New data is cached after at least one read I/O
operation is performed. This process reduces the cache hit ratio.
Optimizes the policy of flushing data to disks. GeminiDB flushes data to disks only after the
cached data occupies all the memory space. Therefore, no data files are generated if the
memory space is sufficient and data is compressed in a timely manner. For traditional LSM-
based storage, data is flushed to disks for persistence. If Blink is used, this process is no
longer required. Blink provides the checkpointing mechanism to ensure data consistency,
and data can be persisted when checkpoints are created.
Supports in-memory compaction. The data records that reside in memory are relocated in a
timely manner to maximize the available space. This allows you to optimize write
amplification and reduce read I/O operations.
Eliminates the Java Native Interface (JNI) overhead of RocksDB or Niagara by using Java.
Supports incremental checkpointing.
Supports the local recovery feature, which enables quick recovery after a job fails.
Supports separation of computing from storage, which enables quick recovery after a job is
restarted or rescaled. This feature is continuously optimized to improve user experience.

GeminiStateBackend requires the following configurations for DataStream and SQL jobs:
DataStream jobs

API configuration

StreamExecutionEnvironment env =
StreamExecutionEnvironment.getExecutionEnvironment();
GeminiStateBackend stateBackend = new GeminiStateBackend(checkpointDir);
// Configuration for gemini
Configuration config = new Configuration();
config.setString("state.backend.gemini.heap.size", "1024mb");
// set configuration to backend
stateBackend.setConfiguration(conf);
// use gemini as state backend
env.setStateBackend(new GeminiStateBackend(checkpointDir));

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Release note

s

> Document Version: 20231114 21

Parameters

Parameter Data
type Unit Default

value Description

state.backend.gemini.
ttl.ms LONG ms

-1 (This
value
indicates
that this
feature is
disabled
by
default.)

Optional. The data
retention period.

state.backend.gemini.
heap.size STRING

The
following
units are
supported:

1024
1024kb
1024mb
1024gb

No default
value

Optional. The memory
size that can be used for
a single GeminiDB
database.

Note We
recommend that you
specify this
parameter. If you do
not specify the
parameter, the
backend calculates
the default value
based on the Java
Virtual Machine
(JVM) and
TaskManager
configurations.

SQL jobs

Use GeminiStateBackend as the backend.
state.backend.type=gemini
Set the time to live (TTL) of the state data.
state.backend.gemini.ttl.ms=129600000
Set the memory size that can be used for a single GeminiDB database. The unit is MB
. Note that the memory resources of operators must include the memory size that can b
e used for a single GeminiDB database. The default memory size is 512 MB.
state.backend.gemini.heap.size.mb=512
Configure the JVM parameters. Recommended configurations:
blink.job.option=-yD env.java.opts.taskmanager='-XX:NewRatio=3 -XX:SurvivorRatio=3 -X
X:ParallelGCThreads=8 -XX:+UnlockDiagnosticVMOptions -
XX:ParGCCardsPerStrideChunk=4096 -XX:+UseCMSInitiatingOccupancyOnly -
XX:CMSInitiatingOccupancyFraction=75 -Djdk.nio.maxCachedBufferSize=10240'

Major bug fixes
Fixes the bug that causes the Calc operator to encounter a null pointer exception (NPE)
during code generation.
Fixes the bug that requires complete rows to be used for state storage.
Fixes a bug in the code splitting component. When JavaCodeSplitter converts local
variables to member fields , JavaCodeSplitter does not process the local variables

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Release note
s

Blink

22 > Document Version: 20231114

inside a "for each" control . This bug causes invalid calculations when you use
 DISTINCT filtering.

This topic lists the major features and changes in Blink 3.3.0 for Realtime Compute.

Major features
Slim CU mode

You can set the expected number of CUs for the initial execution plan. The specified
number of CUs determines the initial parallelism settings of a job when the execution plan
is generated.
You can use the resource allocation for the slim CU mode. If only one parallel instance is
set for each vertex and the number of required CUs exceeds the specified number of
expected CUs, the slim CU mode is enabled. In the slim CU mode, the parallel instances
of multiple vertexes automatically run on one slot. All the vertexes are scheduled to run
on one TaskManager to reduce the consumed resources.

Feature changes
Automatic scaling

The maximum CUs for the automatic scaling feature are changed from the maximum CUs
of a job to the maximum CUs that are specified in the execution plan. This resolves the
issue that jobs fail to be started because of the limit for CUs. After this change is made,
the CUs consumed by a job may exceed the maximum CUs of the automatic scaling
feature.
Optional job parameters are added for the automatic scaling feature. You can use the
added parameters to manually disable the scaling down feature. This ensures the stable
running of jobs. The added parameters are healthmanager.resource.scale.down.enabled
(controls resource scaling down) and healthmanager.parallelism.scale.down.enabled
(controls parallelism scaling down).
Resources can be manually configured and the automatic scaling feature can be enabled
for the jobs that are created based on the DataStream API. As of Blink 3.3.0, you can edit
the resource plans and enable the automatic scaling feature for the jobs that are created
based on the DataStream API. The automatic scaling feature for the jobs that are created
based on the DataStream API is only available for trial use.

Read first rows of duplicate records based on the Rowtime field
You can read the first rows of duplicate records for deduplication based on the Rowtime
field. The Rowtime field indicates the event time and you can perform window operations
only on the data that has the event time attribute. After node deduplication, you can still
perform window operations on the records.
Case insensitive for SQL code
As of Blink 3.3.0, SQL code is case insensitive. Compilation errors may occur due to this
change. If you use uppercase and lowercase letters to distinguish variables or identifiers,
compilation errors occur.

Example

1.11. Blink 3.3.0

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Release note

s

> Document Version: 20231114 23

Error message

This topic lists the improvements and bug fixes in Blink 3.2.3 for Realtime Compute. Blink
3.2.3 is released to enhance your development experience.

Improvements
Resolves the following issue: In the Realtime Compute console, the configuration details in
the Vertex Topology section of the Administration page are inconsistent with those on
the Configuration tab of the Development page.
Resolves the following issue of Blink 3.2.1: The task ID fails to be displayed on the Curve
Charts page.
Resolves the issue: Garbled text exists in the logs on the TaskManager tab of the
Administration page.
Resolves the following issue of Blink 3.2.1: The garbage collection log overwrites the
debugging result. Before a job file is published, data debugging is performed.
Resolves the following issue: The automatic scaling feature for exclusive clusters can be
enabled only by adding job parameters.
Resolves the following issue: If LEFT JOIN statements are executed, INNER JOIN statements
are displayed in the Vertex Topology section on the Administration page.
Resolves the following issue: Users cannot locate the specific row where errors occur in the
code editor.

Bug fixes
Fixes the following bug: The REGEXP_EXTRACT function does not return null if any
argument is null or regular expression is invalid.
Fixes the following bug: Backward slashes (\) of regular expressions in the code are
compiled as semicolons (;).
Fixes the following bug: The debugging result that is printed to the taskmanager.out file is
inaccurate. Before a job file is published, data debugging is performed.
Fixes the following bug: No errors are reported when the LEFT JOIN operation is performed
on a dimension table that is not declared as the dimension table.
Fixes the following bug: Errors occur when the data of the time data type is written to the
AnalyticDB for MySQL result table.
Fixes the following bug in Blink 3.2.1: If a JOIN operation is performed on a MaxCompute
dimension table and the ON clause includes fields of the timestamp data type, job running
errors occur.
Fixes the following bug in Blink 3.2.1 and 3.2.2: Job running errors occur when the
 minibatch parameter is used.
Fixes the following bug: The complex event processing (CEP) syntax passed the check on
the Development page, but job running errors occur.
Fixes the following bug: The maxRetryTimes parameter in the ApsaraDB for Hbase result
table fails to take effect.

1.12. Blink 3.2.3

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Release note
s

Blink

24 > Document Version: 20231114

Fixes the following bug: The group ID is not displayed in Alibaba Cloud Message Queue for
Apache Kafka when Blink reads data from Alibaba Cloud Message Queue for Apache Kafka
source tables.
Fixes the following bug: Running errors occur if only one record of the varbinary data type
is written to the message queue result table.

This topic describes the major features of Blink 3.2.1 and its compatibility with the
DataStream API and SQL.

Major features
Blink 3.2.1 is the first official version based on the Blink open source code. Blink 3.2.1 offers
the following major features:

Job AutoScale
Blink 3.2.1 implements the automatic optimization feature by using automatic configuration
and automatic scaling. The automatic optimization feature dynamically adjusts the
parallelism settings and resources of each operator based on the job running status and
amount of input data. This allows you to shorten job delays. In Blink 3.2.1, this feature is in
public review.
Support for the DataStream API

Blink 3.2.1 supports the DataStream API. Blink 3.2.1 is developed based on the open
source Flink 1.5.1 branch. For information about the DataStream API compatibility
between Blink 3.2.1 and Flink 1.5.1, see API compatibility report: Blink 3.2 and Flink
1.5.1.
Connectors newly supported by the DataStream API

Connector Source Sink

Kafka Compatible

Compatible

HBase

Not compatible

JDBC

RDS<MySQL>

ES

MongoDB

Connectors newly supported for SQL jobs
Besides the connectors supported in Blink 2.0, the following connectors are newly
supported in Blink 3.2.1.

Connector Type

ES DIM

MongoDB SINK

Redis DIM

1.13. Blink 3.2.1
1.13.1. Blink 3.2.1 release notes

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Release note

s

> Document Version: 20231114 25

Redis SINK

Message Queue for Apache RocketMQ V4.2.0 SOURCE

SQL Server SINK

Compatibility
For information about DataStream API compatibility, see API compatibility report: Blink 3.2
and Flink 1.5.1.
For information about SQL compatibility, see Incompatible SQL items: Blink 3.0 and Blink
2.0.

This topic describes the test result of API compatibility between Blink 3.2 and Flink 1.5.1.

Scope
flink-clients
flink-core
flink-java
flink-java8
flink-optimizer
flink-scala
flink-scala-shell
flink-streaming-java
flink-streaming-scala
flink-yarn
flink-connectors
flink-filesystems
flink-formats
flink-metrics
flink-queryable-state
flink-state-backends

Compatibility details
flink-core
The total number of tested methods is 6126, among which only one method is
incompatible between Blink 3.2 and Flink 1.5.1.

No.
Severity (high,
medium, or
low)

Old API Change Impact

1.13.2. API compatibility report: Blink 3.2 and
Flink 1.5.1

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Release note
s

Blink

26 > Document Version: 20231114

1 Medium
GenericCsvInpu
tFormat.suppo
rtsMultiPaths()

The
supportsMultiPat
hs() method is
removed from
the class, and
the returned
default value
changes. The
new default
value does not
support multiple
paths.

This change
affects the
GenericCsvInp
utFormat
subclasses that
involve multiple
paths.

flink-connector-elasticsearch
The total number of tested methods is 14, among which only one method is incompatible
between Blink 3.2 and Flink 1.5.1.

No.
Severity (high,
medium, or
low)

Old API Change Impact

1 Medium ElasticsearchSi
nk

The class is
changed from
ElasticsearchSi
nkBase<T> to
ElasticsearchSi
nkBase<T,org.
elasticsearch.cl
ient.Client>.

Flink 1.5.1 does
not support the
subclasses of
the previous
class.

flink-json
The total number of tested methods is 34, among which only one method is not compatible
between Blink 3.2 and Flink 1.5.1.

No.
Severity (high,
medium, or
low)

Old API Change Impact

1 Medium JsonSchemaCon
verter

The class is
renamed
JsonRowSchem
aConverter.

Flink 1.5.1 does
not support the
subclasses of the
previous class.

flink-streaming-java
The total number of tested methods is 3031, among which four methods are incompatible
between Blink 3.2 and Flink 1.5.1.

No.
Severity (high,
medium, or
low)

Old API Change Impact

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Release note

s

> Document Version: 20231114 27

1 Medium

TwoInputStrea
mOperator.pro
cessElement1
or
TwoInputStrea
mOperator.pro
cessElement2

The void return
type is changed
to the
TwoInputSelect
ion return type.
The endInput1
and endInput2
abstract methods
are added to the
TwoInputStrea
mOperator
interface.

Flink 1.5.1
support
TwoInputStrea
mOperator
implementers
that are not
supported by
Blink 3.2.

2 Medium OneInputStrea
mOperator class

The endInput()
abstract method
is added.

Flink 1.5.1
support
OneInputStrea
mOperator
implementers
that are not
supported by
Blink 3.2.

3 Medium StreamOperato
r class

The
requireState
abstract method
is added.

Flink 1.5.1
support
StreamOperato
r implementers
that are not
supported by
Blink 3.2.

4 Medium OneInputStrea
mOperator class

The endInput()
abstract method
is added.

Flink 1.5.1
support
OneInputStrea
mOperator
implementers
that are not
supported by
Blink 3.2.

SQL syntax changes
Syntax changes
[Over Agg] The window rank function without order by
Behavior changes

[Division to double] | As of Blink 2.2, the division data type can be implicitly converted to
the double data type.
[Decimal] DDL decimal type default precision changed to (10, 0) | As of Blink 2.2, the
default precision for the decimal data type changes.
[CEP] A pattern cannot end with a portion that is used for greedy matching. For example,
the (a b+) pattern is not supported. To resolve this issue, you can change the pattern to
(a b+ c) and define c as not b.
[CEP] The WITHIN clause does not support dynamic windows.

1.13.3. Incompatible SQL items: Blink 3.0 and
Blink 2.0

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Release note
s

Blink

28 > Document Version: 20231114

Interface changes
Code refactoring and semantic changes
[StreamTableSink#emitDataStream returns values changes from void to StreamTableSink]
Class relocation

[Parser inherited
com.alibaba.blink.streaming.connectors.common.source.SourceCollector]
[Class not found] com/alibaba/blink/exceptions/NotEnoughParamsException
[Class not found] com/alibaba/blink/exceptions/UnsupportedTableException
[Class not found] org/apache/flink/table/sources/BatchExecTableSource
[Class not found]
org/apache/flink/table/functions/aggfunctions/DoubleSumWithRetractAggFunction
[Class not found] org/apache/flink/table/functions/Monotonicity
[Class not found] Lcom/alibaba/blink/cache/Cache
[Class not found] org/apache/flink/table/row/GenericRow

Implementation changes
[Method not found] com.alibaba.blink.table.api.RichTableSchema.getColumnTypes
[Method not found] Lorg/apache/flink/table/types/DataType.of
[Verification] java.lang.VerifyError: class
com.koubei.blink.connector.sls.CustomTableFactory overrides final method
setClassLoader
[Class not found] com/aliyun/odps/OdpsException

Connectors
[ODPS] ODPSTableSink stream mode do not support overwrite
[ODPS] Only batch mode support overwrite

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Release note

s

> Document Version: 20231114 29

This topic describes the benefits and network architecture of the exclusive mode.

Shared mode
In shared mode, users share physical resources such as networks, disks, CPUs, and memory
in a computing cluster. Account management and control groups (cgroups) are used to
implement resource isolation and security management. For account, business, and data
security concerns, the shared mode does not support user-defined functions (UDFs).

Note
As of December 24, 2019, Realtime Compute for Apache Flink in shared mode is no
longer available. You cannot purchase projects in this mode. You can only scale out, scale
in, or renew existing shared-mode projects. We recommend that you purchase the
exclusive mode or semi-managed Flink mode of Realtime Compute for Apache Flink based
on your business requirements.

Exclusive mode
Benefits
In exclusive mode, an independent computing cluster is created on an Alibaba Cloud Elastic
Compute Service (ECS) instance. A single user can exclusively use physical resources such
as networks, disks, CPUs, and memory in the computing cluster. The resources of the user
are isolated from those of other users. the exclusive mode provides the following benefits:

Adaption to various hardware
Leverages the capabilities of Alibaba Cloud in hardware-specific optimization such as
CPU-to-memory ratio and GPU or FPGA. This solves hardware adaptation issues.
Isolation between users
Allows you to use a VPC and exclusive computing resources. In addition, you can connect
your development platform to the VPC to meet your business requirements.
Support for UDFs
Isolates your network and physical machines from those of other users. This way, you can
use UDFs and underlying APIs to meet your business requirements. For more information
about UDFs, see Overview.
Rich features

Extract, transform, load (ETL) in a data lake: You can use Flink SQL and UDFs to
develop ETL tasks.
Computing of heterogeneous data sources: Data can be read from heterogeneous data
sources for analysis. For example, Realtime Compute for Apache Flink can read
archived logs from Object Storage Service (OSS) buckets and associate the logs with
high-risk IP addresses in an ApsaraDB for HBase database to analyze web attacks.
Multiple upstream and downstream data stores are supported, such as Create a
Message Queue for Apache Kafka source table and Create a Message Queue for
Apache Kafka result table.

2.Product Introduction
2.1. Overview

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Product Intro
duction

Blink

30 > Document Version: 20231114

Architecture of Realtime Compute for Apache Flink in exclusive mode

For Realtime Compute for Apache Flink in exclusive mode, all your purchased ECS
instances are hosted in the VPC of your Realtime Compute for Apache Flink cluster. In
this mode, you cannot log on to these ECS instances.
When you create a cluster, you can apply for an elastic network interface (ENI) within
your account to access all resources in the VPC to which the ENI belongs.
To access the Internet, you can bind a NAT gateway and an elastic IP address (EIP) to the
ENI. For more information, see Associate an EIP with an Internet NAT gateway.

Note
You are charged for the use of the ENI only when your Realtime Compute for Apache
Flink cluster accesses the Internet.

To access services of other security groups in the VPC, you must configure inbound and
outbound rules for the security group.

Differences between exclusive mode and shared mode

Item Exclusive mode Shared mode

Development of
custom features

Supports UDFs and APIs. This allows
you to flexibly develop jobs. Not supported

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Product Intro

duction

> Document Version: 20231114 31

https://www.alibabacloud.com/help/en/nat-gateway/latest/create-an-internet-nat-gateway

Network type

Supports Alibaba Cloud VPCs.

Note
Users in a Realtime Compute for
Apache Flink cluster in exclusive
mode can access only the
upstream and downstream
storage resources in the same
region and VPC as the cluster. If
you want to access resources in
another VPC, you must configure
port numbers of security groups
and use Express Connect to
access the VPC.

Not supported

Machine type
selection

Allows you to select a machine type
when you purchase Realtime Compute
for Apache Flink in exclusive mode.

Not supported

Supported data
sources

DataHub
Log Service
Message Queue (MQ)
Message Queue for Apache Kafka

Note
For more information about
source tables of Realtime
Compute for Apache Flink, see
Overview of source tables.

DataHub
Log Service
MQ

Note
For more information about
source tables of Realtime
Compute for Apache Flink, see
Overview of source tables.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Product Intro
duction

Blink

32 > Document Version: 20231114

Supported data
outputs

AnalyticDB for MySQL
DataHub
Log Service
MQ
Tablestore
ApsaraDB RDS or DRDS
TSDB
HybridDB for MySQL
Kafka
ApsaraDB for HBase
Elasticsearch

Note
For more information about result
tables of Realtime Compute for
Apache Flink, see Overview of
result tables.

AnalyticDB for MySQL
DataHub
Log Service
MQ
Tablestore
ApsaraDB RDS or DRDS
TSDB
HybridDB for MySQL

Note
For more information about result
tables of Realtime Compute for
Apache Flink, see Overview of
result tables.

Supported
regions

Pay-as-you-go: China (Hangzhou),
China (Beijing), China (Shanghai),
and China (Shenzhen)
Subscription: China (Hangzhou),
China (Beijing), China (Shanghai),
China (Shenzhen), China
(Zhangjiakou), China (Hong Kong),
and Singapore (Singapore).

China (Shenzhen)

Note
As of December 24, 2019,
Realtime Compute for Apache
Flink in shared mode is no longer
available. You cannot purchase
projects in this mode. You can
only scale out, scale in, or renew
existing shared-mode projects.
We recommend that you purchase
the exclusive mode or semi-
managed Flink mode of Realtime
Compute for Apache Flink based
on your business requirements.

Specification
Provides an independent real-time
computing engine and allows each
user to perform stream processing in
an independent ECS cluster.

Provides a large cluster to allow users
to share public resources.

Isolation
Provides strong isolation. Resources in
an ECS instance such as networks and
security groups are isolated from the
resources of other users.

Provides weak isolation. Network
resources cannot be isolated.

Customer groups
Big data teams that have advanced
development technologies and
demand for flexible and controllable
development.

Teams or individuals that only want to
realize streaming business and have
no special requirements for the
development process.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Product Intro

duction

> Document Version: 20231114 33

Cost
Has a higher cost than the shared
mode. In high availability mode, each
user must bear the cost of three
additional master nodes.

Users only need to pay for the
computing service.

Cluster
management and
maintenance

Requires cluster management and
network configuration skills. Cluster management is not required.

This topic describes the development history of Realtime Compute.
Alibaba Cloud Realtime Compute offers an end-to-end solution of stream processing based on
Flink, from job development to administration. Based on many years of experience of Alibaba
Group in big data technologies and business scenarios, Realtime Compute allows you to take
advantage of the powerful capabilities of advanced computing engines. By leveraging the
experience and expertise of Alibaba Group in streaming data services, you can easily and
quickly utilize the benefits of stream processing to accelerate the growth of big data services.

Beginning: Real-time big screen service of the Double 11
Realtime Compute has its beginnings in the big screen service of the Double 11. With years
of experience and development, the small team that once provided the real-time big
screen service and limited real-time reporting services has become an independent and
reliable cloud computing team. Realtime Compute provides an end-to-end cloud solution of
stream processing based on years of experience in real-time computing products,
architecture, and business scenarios. We strive to offer powerful support for small and
medium-sized enterprises (SMEs) in terms of real-time big data processing.
Early stage: Development based on open source Flink
Alibaba Group adopted open source Flink to support the big screen service during the
Double 11. Flink code was created for stream processing. During the early stages, stream
processing services were provided on a small scale. Developers used Flink APIs to create
stream processing jobs. Therefore, developers must have proficient technical skills, handle
debugging challenges, and perform large amounts of repetitive tasks.
Continuous optimization: Development based on Flink APIs
To handle large amounts of repetitive work, Alibaba Group engineers started working on
data encapsulation and abstraction. Based on Flink APIs, they developed a large number of
reusable components for data statistics, such as the basic programming components for
simple filtering, aggregation, and windows. Based on these components, an XML
description language is provided. With this design, Realtime Compute users can use
Extensible Markup Language (XML) to describe and integrate Flink components, and create
end-to-end real-time computing processes. This programming method eliminates large
amounts of repetitive development work that is required at the underlying layer, and
reduces the requirements for development skills. This programming method is different
from the SQL method that is most familiar to data analysts. Therefore, analysts must learn
more about the programming components and XML syntax.
Maturity: Flink SQL development

2.2. Development history

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Product Intro
duction

Blink

34 > Document Version: 20231114

Any emerging technology is only adopted by a small group in the beginning. With the
growth of this technology and the reduction in adoption costs, it will be widely accepted.
Therefore, Alibaba Cloud engineers are working to enable stream processing technologies
to be widely adopted by improving the technology and decreasing adoption costs. Thanks
to years of experience in relational databases, Alibaba Group engineers developed Flink
SQL to replace the programming method that is based on XML and Flink components. Flink
SQL allows you to write SQL code for real-time computing and data processing. All these
improvements are integrated into Flink, the core computing engine of Realtime Compute.
For this computing engine, a single cluster includes up to thousands of machines. An
average of hundreds of billions of messages can be processed per day, and the amount of
data that is processed per day nearly reaches the PB level. Flink clusters have become the
core stream processing clusters of Alibaba Group.
Flink SQL offers the following benefits:

Flink SQL supports a wide range of SQL functions, which improves the technical maturity
of users.
You can use familiar SQL models for easy adoption of Realtime Compute.

This topic describes the architecture and data links in the workflow of Alibaba Cloud Realtime
Compute for Apache Flink.

Architecture
The following figure shows the architecture of Realtime Compute for Apache Flink.

1. Data collection

2.3. Workflow

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Product Intro

duction

> Document Version: 20231114 35

You can use streaming data collection tools to collect and send streaming data in real time
to a publish-subscribe system for big data analysis. This publish-subscribe system
continuously produces events for Realtime Compute for Apache Flink in the downstream to
trigger stream processing jobs. The Alibaba Cloud big data ecosystem offers publish-
subscribe systems for big data analysis in different scenarios. Realtime Compute for
Apache Flink integrates multiple publish-subscribe systems shown in the preceding figure
and therefore can integrate various data streams.

Note
For example, you can directly connect Realtime Compute for Apache Flink to LogHub of
Log Service to quickly integrate and use ECS logs.

2. Stream processing
Data streams continuously enter Realtime Compute for Apache Flink for real-time
processing. At least one data stream must enter Realtime Compute for Apache Flink to
trigger a Realtime Compute for Apache Flink job. In complex business scenarios, Realtime
Compute for Apache Flink allows you to perform JOIN operations on the static data of data
stores.

Note
For example, you can perform JOIN operations on DataHub and ApsaraDB RDS data
based on the primary key of streaming data.

3. Real-time integration
Realtime Compute for Apache Flink can directly write the result data of stream processing
into the destination data store. Realtime Compute for Apache Flink integrates Alibaba
Cloud ecosystems such as OLTP (for example, ApsaraDB RDS), NoSQL (for example,
Tablestore), OLAP (for example, AnalyticDB for MySQL), Message Queue (for example,
DataHub and ONS), and MassiveStorage (for example, OSS and MaxCompute). This
minimizes the end-to-end data latency and complexity of data links and ensures real-time
data processing.

4. Data consumption
After the result data of stream processing is written into a storage system, you can use
customized applications to manage the result data. You can use a storage system to access
the result data, data transmission system to receive the result data, or alerting system to
send alerts.

Data links
Some Alibaba Cloud ecosystems do not support Realtime Compute for Apache Flink. You must
convert the streaming data of these storage systems to other data types.

LogService
Log Service is an end-to-end service for log data. It allows you to quickly collect, transfer,
query, consume, and analyze log data. For more information about how to use logs to
collect streaming data, see Data collection overview.
IoTHub
IoT Hub helps developers build secure data channels to implement bidirectional
communications between the cloud and terminal devices. The terminal devices include
sensors, actuators, embedded devices, and smart home appliances. You can use the IoT
Hub rules engine to easily transfer IoT data to DataHub and use Realtime Compute for
Apache Flink and MaxCompute to perform computations on the data. For more information
about how to transfer IoT data to DataHub, see Configure a data forwarding rule.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Product Intro
duction

Blink

36 > Document Version: 20231114

https://www.alibabacloud.com/help/en/sls/user-guide/data-collection-overview
https://www.alibabacloud.com/help/en/iot/user-guide/configure-a-data-forwarding-rule

MQ
Alibaba Cloud Message Queue is a complete messaging service. It provides features such
as publishing and subscription, message tracing, resource statistics, timing (latency), and
monitoring and alerting based on distributed clusters in high availability mode.

Realtime Compute for Apache Flink supports a wide range of upstream and downstream data
stores.

Source tables
Create an Oracle database source table
Create a Log Service source table
Create a Hologres source table
Create a source table
Create a Message Queue for Apache Kafka source table
Create a Tablestore source table
Create a full MaxCompute source table
Create an incremental MaxCompute source table

Result tables
Create an AnalyticDB for MySQL V2.0 result table
Create a Hologres result table
Create an Oracle database result table
Create a Log Service result table
Create a ApsaraMQ for RocketMQ result table
Create a Tablestore result table
Create an ApsaraDB RDS result table
Create a MaxCompute result table
Create an ApsaraDB for HBase result table
Create an Elasticsearch result table
Create a TSDB result table
Create a Message Queue for Apache Kafka result table
Create a HybridDB for MySQL result table
Create an ApsaraDB RDS for SQL Server result table
Create an ApsaraDB for Redis result table
Create an ApsaraDB for MongoDB result table
Create an AnalyticDB for MySQL V3.0 result table
Create an AnalyticDB for PostgreSQL result table
Create a custom result table
Create an InfluxDB result table
Create a Phoenix5 result table

Dimension tables
Create a Hologres dimension table
Create a Tablestore dimension table

2.4. Upstream and downstream
data stores

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Product Intro

duction

> Document Version: 20231114 37

Create an ApsaraDB RDS for MySQL dimension table
Create an ApsaraDB for HBase dimension table
Create a MaxCompute dimension table
Create an ApsaraDB for Redis dimension table
Create a Phoenix5 dimension table
Create an AnalyticDB for MySQL V3.0 dimension table
Create an Elasticsearch dimension table

Realtime Compute for Apache Flink ensures account, business, and data security for end-to-
end real-time computing.
Account security involves Realtime Compute for Apache Flink and data stores.

Account security of Realtime Compute for Apache Flink
Only Alibaba Cloud accounts can be used as Realtime Compute for Apache Flink accounts.
The account information includes a username and its password or a username and a
signature key. HTTPS is used to secure account information. For more information about
account security of Realtime Compute for Apache Flink, see Grant permissions to a RAM
user.
Account security of data stores
In Realtime Compute for Apache Flink, the accounts of data stores are used to create
source and result tables. Realtime Compute for Apache Flink provides Resource Access
Management (RAM) and Security Token Service (STS) to prevent the leakage of your
business data due to the loss of account information. For more information about account
security for data stores, see Assign a RAM role to an account that uses Realtime Compute
for Apache Flink in exclusive mode.

Business security
Business security of Realtime Compute for Apache Flink is used to isolate projects and secure
business processes.

Project isolation
Realtime Compute for Apache Flink projects are isolated based on project permissions. Only
users that belong to a project can access or manage authorized sub-product entities in the
project. Project-level resource isolation ensures that other users do not interfere with your
operations.

Note For example, if the data amount increases dramatically when a job of a
user is running, the CPU utilization of the job is increased. Due to resource isolation, the
CPU utilization of jobs of other users is not affected.

Business process
Realtime Compute for Apache Flink provides separate pages for data development and
administration to clearly demonstrate the entire development process of stream processing
in its console. This guarantees a complete and secure business process.

Code version
Realtime Compute for Apache Flink allows you to compare code versions and roll back to
an earlier version. This helps you trace the code and rectify faults.

2.5. Product security

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Product Intro
duction

Blink

38 > Document Version: 20231114

Standalone debugging tool in the IDE
Realtime Compute for Apache Flink offers a debugging tool in the integrated
development environment (IDE), which allows you to debug the code without affecting
online data. You can specify data for source tables, dimension tables, and result tables to
create a job, and then debug the data offline. This ensures that running jobs are not
affected.
Job publishing process
The job publishing process is secure. You can debug the code without affecting online
data. After you debug the new code, you can publish the job and view it on the
Administration page of the Realtime Compute for Apache Flink development platform.
Realtime Compute for Apache Flink jobs that are running do not directly use the new
code. To use the new code, you must stop the jobs and then restart them with the new
code. .

Data security
Realtime Compute for Apache Flink ensures the security of its system data and business data.

System data security
Realtime Compute for Apache Flink ensures its data security in the following aspects:

HTTPS is used to secure transmission links.
The Advanced Encryption Standard (AES) is used to encrypt information about the
connections with data stores. This helps prevent the leakage of sensitive information.
Realtime Compute for Apache Flink has passed comprehensive and in-depth attack tests.
Alibaba Cloud security team provides security services for Realtime Compute for Apache
Flink.

Business data
Realtime Compute for Apache Flink does not store the business data of users. The security
of business data is ensured by Alibaba Cloud storage systems. For more information, see
the security models and best security practices of Alibaba Cloud storage systems.

This topic describes the service scope and limits of Realtime Compute for Apache Flink,
including the limits on CU processing capabilities and job creation.
Evaluate the impact of the limits on your business carefully.

If you want to use UDXs, you must purchase Realtime Compute for Apache Flink in
exclusive mode. For more information about UDXs, see Overview.
Realtime Compute development platform supports only the Google Chrome browser.

Supported regions
The regions supported by Realtime Compute for Apache Flink vary based on your business
requirements.

Pay-as-you-go for the exclusive mode: China (Hangzhou), China (Beijing), China (Shanghai),
and China (Shenzhen).
Subscription for the exclusive mode: China (Hangzhou), China (Beijing), China (Shanghai),
China (Shenzhen), China (Zhangjiakou-Beijing Winter Olympics), China (Hong Kong), and
Singapore (Singapore).

CU processing capabilities

2.6. Limits

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Product Intro

duction

> Document Version: 20231114 39

https://stream-ap-southeast-3.console.aliyun.com

Test results of Realtime Compute for Apache Flink demonstrate that the CU processing
capabilities vary based on the complexity of businesses.

For simple operations such as single-stream filtering and string conversion, one CU can
process 10,000 data records per second.
For complex operations such as operations that use a JOIN clause, GROUP BY clause, or
window function, one CU can process 1,000 to 5,000 data records per second.

Limits on job and task quantities
Realtime Compute for Apache Flink has the following limits on jobs, task versions, and task
pages opened in an integrated development environment (IDE) under a project:

A maximum of 100 jobs can be created under a project.
A maximum of 50 folders are allowed under a project. The number of folder hierarchies
cannot exceed 5.
A maximum of 50 UDXs or JAR packages are allowed under a project.
A maximum of 50 data stores can be registered under a project.
A maximum of 20 historical versions can be saved in a job.

This topic describes the architecture of Realtime Compute for Apache Flink in exclusive
mode.

Architecture
The following figure shows the architecture of Realtime Compute for Apache Flink in exclusive
mode.

If you use Realtime Compute for Apache Flink in exclusive mode, all your purchased Elastic
Compute Service (ECS) instances are fully hosted in the virtual private cloud (VPC) in which
your Realtime Compute for Apache Flink cluster resides. In this mode, you cannot log on to
your purchased ECS instances.

2.7. Architecture of Realtime
Compute for Apache Flink in
exclusive mode (phased-out)

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Product Intro
duction

Blink

40 > Document Version: 20231114

When you create a Realtime Compute for Apache Flink cluster, Realtime Compute for
Apache Flink applies for an elastic network interface (ENI) under your account. You can use
this ENI to access all the resources in your VPC.
To allow your Realtime Compute for Apache Flink cluster to access the Internet, you can
bind a network address translation (NAT) gateway and an elastic IP address (EIP) to the ENI.
For more information, see Associate an EIP with a NAT gateway.
The ENI belongs to an independent security group under your account. To access the
services of other security groups in the VPC, you must configure inbound and outbound
rules for the security group.

Note
You are charged for the use of the ENI only when your Realtime Compute for Apache Flink
cluster accesses the Internet.

Benefits
End-to-end real-time data computing and development

Provides real-time data processing capabilities based on Flink SQL, which implements
automatic data recovery. This ensures accurate data processing even if failures occur.
Supports multiple built-in functions, such as string, date, and aggregate functions.
Supports various window types, such as tumbling, sliding, and session windows.
Provides accurate control over computing resources, which ensures resource isolation for
jobs.
Provides the following key performance metrics that are superior to the metrics of
Apache Flink:

The data computing latency can be indicated in subseconds.
The throughput of a single job can reach millions of records per second. A single cluster
can consist of thousands of servers.

Deeply integrates various cloud data storage systems such as DataHub, Log Service,
ApsaraDB RDS, Tablestore, and AnalyticDB for MySQL. This allows you to read and write
data from and to these systems in a convenient manner.

Fully-managed real-time computing service
Uses a fully-managed stream computing engine.
Allows you to run and query streaming data without the need to provision or manage
infrastructures.
Allows you to activate streaming data processing services with one click.
Integrates features such as data storage, data development, data O&M, and monitoring
and alerting. This reduces both the trial and migration costs of stream processing.
Isolates and protects the managed and running services of different tenants.

Reduced manpower and cluster costs
Significantly optimizes the SQL execution engine to provide computing jobs that are
more cost-effective than native Flink jobs.
Significantly reduces development and operation costs, which are much lower than the
costs of open source streaming frameworks.

High availability

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Product Intro

duction

> Document Version: 20231114 41

https://www.alibabacloud.com/help/en/elastic-ip-address/latest/associate-an-eip-with-a-nat-gateway

If an ECS instance is abnormal or a Realtime Compute for Apache Flink job is recovered
from a failure or is resumed, you can use the JobManager or a TaskManager on an available
ECS instance in the same zone to ensure high availability for jobs. You can also use the
JobManager or a TaskManager on an available ECS instance in a different zone or region to
ensure high availability across zones.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Product Intro
duction

Blink

42 > Document Version: 20231114

This topic describes the billing unit of Realtime Compute for Apache Flink.
The basic billing unit of Realtime Compute for Apache Flink is compute unit (CU), which
indicates computing resources. One CU is equal to 1 CPU core and 4 GB of memory . The
number of CUs determines the computing capability of the underlying system of Realtime
Compute for Apache Flink.
The number of CUs that is consumed by a Realtime Compute for Apache Flink job varies
based on the queries per second (QPS) of the input data stream of the job, the computing
complexity, and the distribution of the input data. To estimate the processing capability of
one CU in Realtime Compute for Apache Flink, select one of the following methods based on
the operation complexity:

For simple operations such as single-stream filtering and string conversion, one CU can
process 10,000 data records per second.
For complex operations such as operations that use a JOIN clause, GROUP BY clause, or
window function, one CU can process 1,000 to 5,000 data records per second.

You can estimate the number of CUs that you need to purchase based on your business scale
and the preceding computing capability.

Note
The preceding computing capability estimate refers only to the internal processing
capability of Realtime Compute for Apache Flink. The external data read and write
capabilities are not included. The external data read and write efficiency may affect
the estimation of the computing capability of Realtime Compute for Apache Flink.

If you want to use Realtime Compute for Apache Flink to read data from Log
Service but the query quota of Log Service is limited, the overall computing
capability of Realtime Compute for Apache Flink is subject to the capability
allowed by Log Service.
If the number of connections or transactions per second (TPS) is limited for
the ApsaraDB RDS database that Realtime Compute for Apache Flink
references, the throughput of Realtime Compute for Apache Flink is limited
by the throttling of the ApsaraDB RDS database.

If you use window functions in a Realtime Compute for Apache Flink job, the
number of CUs consumed in the job is greater than that consumed in a simple job.
We recommend that you purchase at least four CUs for such a job.

This topic describes the billing methods of Realtime Compute for Apache Flink.

Important The system sends you a notification when you have an overdue
payment within your account. We recommend that you promptly pay your overdue bills
to prevent your projects from being released. Take note that your projects may be
released at a system-selected time after the payment due date.

The following table lists the unit price for each node model.

Region Node model (master/slave) Price (USD/month)

3.Pricing
3.1. Billing unit

3.2. Billing methods

Blink Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Pricing

> Document Version: 20231114 43

Japan (Tokyo)

4 CPU cores, 16 GB of memory 187.16

8 CPU cores, 32 GB of memory 340.96

16 CPU cores, 64 GB of
memory 648.56

32 CPU cores, 128 GB of
memory 1263.75

56 CPU cores, 224 GB of
memory 2185.18

Malaysia (Kuala Lumpur)

4 CPU cores, 16 GB of memory 164.32

8 CPU cores, 32 GB of memory 288.07

16 CPU cores, 64 GB of
memory 535.57

32 CPU cores, 128 GB of
memory 1030.60

56 CPU cores, 224 GB of
memory 1773.04

Germany (Frankfurt)

4 CPU cores, 16 GB of memory 187.90

8 CPU cores, 32 GB of memory 332.44

16 CPU cores, 64 GB of
memory 621.51

32 CPU cores, 128 GB of
memory 1199.64

56 CPU cores, 224 GB of
memory 2066.91

You can also log on to the Realtime Compute development platform console and use the
selected cluster configuration in the Recommended Solutions section on the Pricing
Calculator page. The following figure shows the Pricing Calculator page.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Pricing Blink

44 > Document Version: 20231114

https://stream-ap-southeast-3.console.aliyun.com

This topic describes how to select specifications when you configure a Realtime Compute for
Apache Flink cluster in exclusive mode. It also provides precautions during the configuration.

Background information
A Realtime Compute for Apache Flink cluster functions as a primary/secondary distributed
cluster, which consists of master and slave nodes.

Master nodes manage cluster resources and interactions among slave nodes, but are not
used for computing.
Slave nodes are used for computing.

Note
A slave node cannot use all of its resources for computing because the operating
system and interactions with other nodes also consume resources.

Usage notes
The slave node specifications determine the scaling configuration. For example, if your
slave node specifications are 8 CPU cores and 32 GB memory, you can add or remove only
a specific number of nodes of this configuration for each scaling operation. In this case, the
number of available compute units (CUs) increases or decreases by the value that is
calculated by using the following formula: Number of nodes added or removed × 6 CUs.
Three master nodes in a Realtime Compute for Apache Flink cluster support failover in case
of a failure. This ensures cluster stability. If you configure a Realtime Compute for Apache
Flink cluster with three master nodes, Alibaba Cloud provides you with a Service Level
Agreement (SLA) guarantee.
You cannot change the number of master nodes in a Realtime Compute for Apache Flink
cluster.

Select specifications
The configuration of a Realtime Compute for Apache Flink cluster in exclusive mode can be
calculated in CUs. One CU is equivalent to 1 CPU core and 4 GB memory. You can configure
master and slave nodes as required based on the following computing logic. Realtime
Compute for Apache Flink provides a pricing calculator to help you configure your cluster to
be as cost-effective as possible.

Note
If you are a new user, you can determine the number of CUs based on the queries per
second (QPS) and complexity of your business logic, and then configure the cluster. For
more information, see Billing methods. Processing capability of one CU in Realtime
Compute for Apache Flink:

For simple operations such as single-stream filtering and string conversion, one CU
can process 10,000 data records per second.
For complex operations such as operations that use a JOIN clause, GROUP BY
clause, or window function, one CU can process 1,000 to 5,000 data records per
second.

The following tables list the empirical CU quantities for different master and slave node
specifications.

3.3. Specification selection

Blink Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Pricing

> Document Version: 20231114 45

You must configure at least two slave nodes for a Realtime Compute for Apache Flink
cluster in exclusive mode. Therefore, the minimum computing capability of this cluster is 6
CUs, which is calculated by using the following formula: 3 CUs × 2.

Slave node specifications Available CUs

4 CPU cores, 16 GB memory 3

8 CPU cores, 32 GB memory 6

16 CPU cores, 64 GB memory 13

24 CPU cores, 96 GB memory 21

32 CPU cores,128 GB memory 28

56 CPU cores, 224 GB memory 52

64 CPU cores, 256 GB memory 60

Note
The empirical data is for reference only.

The master node specifications are restricted by the maximum number of CUs allowed in a
cluster. The following table lists empirical CU quantities for different master node
specifications.

Master node specifications Maximum number of CUs allowed in a
cluster

4 CPU cores, 16 GB memory 80

8 CPU cores, 32 GB memory 160

16 CPU cores, 64 GB memory 800

24 CPU cores, 96 GB memory More than 800

Note
The empirical data is for reference only.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Pricing Blink

46 > Document Version: 20231114

This topic describes how to manually renew a Realtime Compute for Apache Flink instance.
Renewal is to extend the duration for a project after it expires. The renewal duration is
measured in months or years, and the minimum renewal duration is one month.

Important In the Realtime Compute for Apache Flink console, the Overview page
shows the remaining days of your projects. The system sends you a notification if you
have an overdue payment under your account. We recommend that you pay off your
overdue bills to prevent your projects from being released. Note that your projects may
be released at a system-selected time after the payment due date.

Renew a Realtime Compute for Apache Flink instance
1. Go to the Project Management page.

i. Log on to the Realtime Compute development platform.
ii. Move the pointer over the username in the upper-right corner.
iii. Click Project Management.

2. In the left-side navigation pane, choose Cluster Management > Clusters.
3. On the Clusters page, find your cluster, click More in the Actions column, and select

Renew.
4. On the Renew page, specify Renewal Duration.
5. Read and select Realtime Compute Exclusive Mode (Subscription) Agreement of

Service.
6. Click Pay.
7. On the Purchase page, select a payment method.
8. Click Purchase.

This topic describes how to automatically renew a Realtime Compute instance. You can
enable or disable auto-renewal for an instance or change the auto-renewal duration for an
instance.

Enable auto-renewal
1. Log on to the Alibaba Cloud Management Console.
2. In the upper-right corner of the page, click Billing and then Renew.
3. On the page that appears, click the Manual or Nonrenewal tab.
4. In the instance list, find the target instance and click Enable Auto Renewal in the

Actions column.
5. In the Enable Auto Renewal dialog box, select your expected renewal duration from the

Unified Auto Renewal Cycle drop-down list.
6. Click Auto Renew.

Disable auto-renewal
1. Log on to the Alibaba Cloud Management Console.

3.4. Renewal
3.4.1. Manual renewal

3.4.2. Auto-renewal

Blink Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Pricing

> Document Version: 20231114 47

https://stream-ap-southeast-3.console.aliyun.com
https://home-intl.console.aliyun.com/#/
https://home-intl.console.aliyun.com/#/

2. In the upper-right corner of the page, click Billing and then Renew.
3. Click the Auto tab.
4. In the instance list, find the target instance and click Enable Manual Renewal in the

Actions column.
5. In the Enable Manual Renewal dialog box, click OK.

Change the auto-renewal duration
1. Log on to the Alibaba Cloud Management Console.
2. In the upper-right corner of the page, click Billing and then Renew.
3. Click the Auto tab.
4. In the instance list, find the target instance and click Edit Auto Renewal in the Actions

column.
5. In the Edit Auto Renewal dialog box, select your expected renewal duration from the

auto-renewal duration drop-down list.
6. Click OK.

This topic describes how to scale a Realtime Compute for Apache Flink cluster or project.

Change resource configurations of a cluster

Note
Fees after the resource configuration change

Scale-out or scale-up (Master Scale-Up or Slave Scale-Out): You must pay
the related upgrade fees.
Scale-in or scale-down (Master Scale-Down or Slave Scale-In): The refund
from the scale-in or scale-down operation operation is returned to your
account.

After you perform Master Scale-Up or Slave Scale-Out, you must add required IP
addresses to the whitelist of the database. For more information, see Configure a
whitelist for accessing storage resources.

You can modify the configuration of Master Specifications or Slave Quantity to change
the configuration of the cluster.

1. Go to the Project Management page.
i. Log on to the Realtime Compute development platform.
ii. Move the pointer over the username in the upper-right corner.
iii. Click Project Management.

2. In the left-side navigation pane, choose Cluster Management > Clusters.
3. On the Clusters page, find your cluster, click More in the Actions column, and then select

Scale Out or Scale In based on your business requirements.
4. Change resource configurations.

The following example describes two scale-out or scale-up methods:

3.5. Change resource
configurations

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Pricing Blink

48 > Document Version: 20231114

https://home-intl.console.aliyun.com/#/
https://stream-ap-southeast-3.console.aliyun.com

Master Scale-Up (use higher specifications)
a. On the Update page, select Master Scale-Up for Upgrade Method.
b. Specify Master Specifications.

Note
You can change the master specifications but cannot change the number of
master nodes.
If you use a high availability cluster in which three master nodes are
configured, the system upgrades all the three master nodes at the same time
when you select Master Scale-Up.

Slave Scale-Out (increase the number of slave nodes)
a. On the Update page, select Slave Scale-Out for Upgrade Method.
b. Increase the value of Slave Quantity.

Note
If the number of CUs is insufficient, we recommend that you select Slave
Scale-Out and increase the value of Slave Quantity.
If you are unable to complete payment after you specify Slave Quantity and
select Realtime Compute Exclusive Mode (Subscription) Terms of Service, add
a vSwitch and enter the ID of the new vSwitch in vSwitchId. After verification,
you can complete the payment for the scale-out operation. For more
information about how to add a VSwitch, see Create and manage a VPC.
The slave nodes that you want to add must be located in the same zone as the
cluster.
You cannot change the slave specifications for an existing Realtime Compute
for Apache Flink cluster in exclusive mode. You can only increase the value of
Slave Quantity. If you want to change the slave specifications, you must
purchase a new cluster.

5. Read the terms of service and select Realtime Compute Exclusive Mode (Subscription)
Terms of Service.

6. Click Pay.

Change resource configurations of a project

Note
If the computing capability of existing resources does not meet your business
requirements, you can scale out the project to improve the computing capability of
the system.
If the computing capability of existing computing resources is excessive to meet
your business requirements, you can downgrade the resource configuration to
reduce costs.

1. Go to the Project Management page.
i. Log on to the Realtime Compute development platform.
ii. Move the pointer over the username in the upper-right corner.

Blink Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Pricing

> Document Version: 20231114 49

https://www.alibabacloud.com/help/en/vpc/user-guide/create-and-manage-a-vpc
https://stream-ap-southeast-3.console.aliyun.com

iii. Click Project Management.
2. In the left-side navigation pane, choose Project Management > Projects.
3. Change resource configurations:

i. On the Projects page, find your project and click Scale In/Out in the Actions column.
ii. In the Scale In/Out dialog box, specify Specified CUs.
iii. Click OK.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Pricing Blink

50 > Document Version: 20231114

You can use an Alibaba Cloud account to purchase Realtime Compute for Apache Flink and
create projects. You can also use the Alibaba Cloud account to authorize Resource Access
Management (RAM) users to access Realtime Compute for Apache Flink projects that are
created by the Alibaba Cloud account. This topic describes how to create a RAM user and
authorize the RAM user to access Realtime Compute for Apache Flink.

What is a RAM user?
A physical identity that has a fixed ID and credential information. A RAM user represents a
person or an application. A RAM user has the following characteristics:

A RAM user can be created by an Alibaba Cloud account. In this case, the RAM user belongs
to the Alibaba Cloud account. A RAM user can also be created by a RAM user or a RAM role
that has administrative rights. In this case, the RAM user belongs to the Alibaba Cloud
account that creates the RAM user or the RAM role.
A RAM user does not own resources. Resource usage fees of the RAM user are billed to the
Alibaba Cloud account to which the RAM user belongs. A RAM user does not receive
individual bills and cannot make payments.
Before RAM users can log on to the Alibaba Cloud Management Console or call operations,
they must be authorized by Alibaba Cloud accounts. After RAM users are authorized, the
RAM users can access resources that are owned by the Alibaba Cloud accounts.
RAM users have independent passwords or AccessKey pairs for logon.
An Alibaba Cloud account can create multiple RAM users. RAM users can be used to
represent employees, systems, and applications within an enterprise.

You can create RAM users and authorize the RAM users to access different resources. If
multiple users in your enterprise need to simultaneously access resources, you can use RAM
to assign the least permissions to the users. This prevents the users from sharing the
username and password or AccessKey pair of an Alibaba Cloud account and reduces the
security risks.

Procedure
1. Create a RAM user.

For more information about how to create a RAM user, see Create a RAM user.

Note
You must initialize RAM when you use RAM for the first time. For more
information, see Configure a password policy for RAM users and Manage security
settings of RAM users.
To ensure account security, Realtime Compute for Apache Flink provides the
account verification feature. If you do not manage a job for a long period of time,
the system sends a text message and an email to you for account verification.

2. Create a custom policy.
For more information about how to create a custom policy in the RAM console, see Create a
custom policy The following code shows a policy of Realtime Compute for Apache Flink:

4.Preparation
4.1. Grant permissions to a RAM
user

Blink Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Preparation

> Document Version: 20231114 51

https://www.alibabacloud.com/help/en/ram/user-guide/create-a-ram-user
https://www.alibabacloud.com/help/en/ram/user-guide/configure-a-password-policy-for-ram-users
https://www.alibabacloud.com/help/en/ram/user-guide/manage-security-settings-of-ram-users
https://www.alibabacloud.com/help/en/ram/getting-started/create-a-custom-policy-1

{
 "Version": "1",
 "Statement": [
 {
 "Action": "stream:*",
 "Resource": "acs:stream:*:*:*",
 "Effect": "Allow"
 },
 {
 "Action": "ram:PassRole",
 "Resource": "acs:ram:*:*:*",
 "Effect": "Allow"
 }
]
}

Note
The policy of Realtime Compute for Apache Flink allows you to grant permissions on
different projects to different RAM users. To authorize a RAM user to access a single
project, change Resource in the preceding code to
"Resource":"acs:stream:*:*:projectname". projectname is the name of the project
that you want to authorize the RAM user to access.

3. Authorized RAM users or user groups.
Attach the preceding policy to specified RAM users or RAM user groups. For more
information, see Grant permissions to RAM users and Grant permissions to a RAM user
group

4. Use the credentials of a RAM user to log on to the Realtime Compute for Apache Flink
console.
In the left-side navigation pane of the RAM console, click Overview and view the logon
address of the RAM user in the Account Management section.

This topic describes how to activate Realtime Compute for Apache Flink in exclusive mode.
This topic also describes how to create Realtime Compute for Apache Flink clusters and
projects in exclusive mode.

Activate Realtime Compute for Apache Flink in exclusive mode

4.2. Activate Realtime Compute for
Apache Flink and create a project

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Preparation Blink

52 > Document Version: 20231114

https://www.alibabacloud.com/help/en/ram/getting-started/grant-permissions-to-a-ram-user
https://www.alibabacloud.com/help/en/ram/user-guide/grant-permissions-to-a-ram-user-group
https://ram.console.aliyun.com/

Note
Realtime Compute for Apache Flink in exclusive mode cannot be purchased from
April 28, 2021. You can only scale out, scale in, or renew the existing projects of
Realtime Compute for Apache Flink in exclusive mode. If you want to purchase
Realtime Compute for Apache Flink, We recommend that you use Flink full hosting
for realtime compute.
A Realtime Compute for Apache Flink cluster in exclusive mode can access only
storage resources in the same virtual private cloud (VPC), region, and security
group as the cluster. To allow the cluster to access resources in another VPC, use
Express Connect to access the VPC.

After you place an order for Realtime Compute for Apache Flink in exclusive mode, you must
create a cluster before you create a project.

1. Activate Realtime Compute for Apache Flink.
i. Log on to the product page of Realtime Compute for Apache Flink.

Note
Use your Alibaba Cloud account instead of a RAM user to activate Realtime Compute
for Apache Flink and create a project.

ii. Click Buy Now.
iii. Configure the parameters. including the region, master node specifications, number of

master nodes, slave node specifications, number of slave nodes, and billing duration
based on your business requirements.

iv. Click Buy Now.
v. Read the terms of service and select I have read and agree to Realtime Compute

Exclusive Mode (Subscription) Agreement of Service.
vi. Click Pay.

2. Create a Realtime Compute for Apache Flink cluster.
Preparations

Blink Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Preparation

> Document Version: 20231114 53

https://www.alibabacloud.com/help/en/express-connect/product-overview/what-is-express-connect#concept-ipg-pry-xdb
https://www.alibabacloud.com/products/realtime-compute?spm=a3c0i.7911826.1097638.dnavproductsh13.1cd514b3Yx8AyU

After you activate Realtime Compute for Apache Flink in exclusive mode, Realtime
Compute for Apache Flink creates a security group in your VPC and applies for an
elastic network interface (ENI). For more information, see Overview.

Note
Do not delete the security group or the ENI. Otherwise, the cluster cannot be
created.

If you have VPCs, specify a VPC for Realtime Compute for Apache Flink.
If you do not have a VPC, activate the Alibaba Cloud VPC service. For more
information about how to activate the Alibaba Cloud VPC service, see Plan networks.

Note
Make sure that the VPC you created meets the following requirements:

Sufficient Elastic Compute Service (ECS) instances are available in the VPC.
The number of available IP addresses in a vSwitch is greater than or equal
to the number of nodes in a Realtime Compute for Apache Flink cluster.
For more information, see Configure a whitelist for accessing storage
resources and Create and manage a vSwitch.

You can upload a UDF package to a Realtime Compute for Apache Flink cluster in
exclusive mode. To ensure data security, Realtime Compute for Apache Flink stores the
UDF package to an Object Storage Service (OSS) bucket. You must specify the OSS
bucket. If you do not have OSS buckets, create one first. For more information about
how to create an OSS bucket, see Create buckets.
Assign a RAM role to an account that uses Realtime Compute for Apache Flink in
exclusive mode. For more information, see Assign a RAM role to an account that uses
Realtime Compute for Apache Flink in exclusive mode.

Procedure
a. After you complete the payment, click Console.
b. On the Clusters page, click Create Cluster.

Note
If no project is created for an order, a red number is displayed on Create Cluster
in the upper-right corner of the Clusters page. The number indicates the number
of orders for which no project is created.

c. In the Select Order step, select an order in Order ID and click Next.
d. In the Basic Information step, configure Cluster Name and Cluster Description

and click Next.
e. In the Cluster Settings step, enter the configuration information and click Next.

Note
The Realtime Compute for Apache Flink cluster must reside in the same security
group, region, and VPC as the upstream and downstream storage that you
purchased.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Preparation Blink

54 > Document Version: 20231114

https://www.alibabacloud.com/help/en/ecs/user-guide/overview-48
https://www.alibabacloud.com/help/en/vpc/getting-started/plan-networks
https://www.alibabacloud.com/help/en/flink/configure-a-whitelist-for-accessing-storage-resources-1
https://www.alibabacloud.com/help/en/vpc/user-guide/create-and-manage-vswitch
https://www.alibabacloud.com/help/en/oss/getting-started/create-buckets-6
https://www.alibabacloud.com/help/en/flink/assign-a-ram-role-to-an-account-that-uses-realtime-compute-for-apache-flink-in-exclusive-mode

OSS Bucket
Select an OSS bucket in which you want to store your UDF package. If you do not
have OSS buckets, create one first. For more information, see Create buckets. When
you create an OSS bucket, you must specify Standard for Storage Class. We
recommend that you specify Private for Access Control List (ACL). Do not select
Public Read.

VPC
Select the VPC that you want to access and customize the name of the VPC.

Note
Realtime Compute for Apache Flink can identify only custom VPC names.

Blink Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Preparation

> Document Version: 20231114 55

https://www.alibabacloud.com/help/en/oss/getting-started/create-buckets-6

Zone
After you properly configure the VPC, the system automatically displays the available
zones.

Note
No available zone or vSwitch is displayed in the following scenarios:

ECS instances in the selected zone are insufficient. For more information
about how to add an ECS instance, see Create an instance by using the
wizard.
The number of available IP addresses in the vSwitch that you select is less
than the number of nodes in a Realtime Compute for Apache Flink cluster.
For more information, see Configure a whitelist for accessing storage
resources and Create and manage a vSwitch.

CIDR Block
The available CIDR blocks are automatically displayed.

f. In the Confirm step, click Create.

Note
The cluster is created after it enters the Running state from the Starting state.
This process takes about half an hour.

3. Create a project.
i. In the left-side navigation pane, choose Cluster Management > Clusters. Find the

cluster for which you want to create a project and click Create Project in the Actions
column.

ii. In the Create Project dialog box, configure Project Name and Project Description,
and slide the pointer on the right side of Specified CUs to specify the required number
of compute units (CUs).

iii. Click OK.

This topic describes how to assign a Resource Access Management (RAM) role to an account
that uses Realtime Compute for Apache Flink in exclusive mode.

Assign a RAM role to an account
You must assign a RAM role to your Alibaba Cloud account before you use Realtime Compute
for Apache Flink.

1. Click Authorize to go to the authorization page.

4.3. Role authorization
4.3.1. Assign a RAM role to an account that
uses Realtime Compute for Apache Flink in
exclusive mode

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Preparation Blink

56 > Document Version: 20231114

https://www.alibabacloud.com/help/en/ecs/user-guide/create-an-instance-by-using-the-wizard
https://www.alibabacloud.com/help/en/flink/configure-a-whitelist-for-accessing-storage-resources-1
https://www.alibabacloud.com/help/en/vpc/user-guide/create-and-manage-vswitch

Note If you do not assign the default RAM role to your Alibaba Cloud account, the
preceding message appears when you use Realtime Compute for Apache Flink.

2. Click AliyunStreamDefaultRole and click Authorize.

Note After your account is assigned the RAM role, refresh the page in the
Realtime Compute for Apache Flink console. Then, you can perform operations in the
console.

View the authorization information about the current role
1. Log on to the RAM console.

Log on to the RAM console by using your Alibaba Cloud account.
Log on to the RAM console as a RAM user.

2. In the left-side navigation pane, click Roles. On the Roles page, click
AliyunStreamDefaultRole in the Role Name column of the role list.

3. On the AliyunStreamDefaultRole page, click AliyunStreamRolePolicy in the Policy
column on the Permissions tab.

4. On the Policy Document tab, view the current policy information of Realtime Compute for
Apache Flink.

{
 "Version": "1",
 "Statement": [
 {
 "Action": [
 "ots:List*",
 "ots:DescribeTable",
 "ots:Get*",
 "ots:*Row"
],
 "Resource": "*",
 "Effect": "Allow"
 },
 {
 "Action": [
 "dhs:Create*",
 "dhs:List*",
 "dhs:Get*",
 "dhs:PutRecords",
 "dhs:DeleteTopic"
],
 "Resource": "*",
 "Effect": "Allow"
 },
 {
 "Action": [
 "log:List*",
 "log:Get*",
 "log:Post*"
],
 "Resource": "*",
 "Effect": "Allow"

Blink Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Preparation

> Document Version: 20231114 57

https://ram.console.aliyun.com/
https://signin.alibabacloud.com/login.htm

 "Effect": "Allow"
 },
 {
 "Action": [
 "mns:List*",
 "mns:Get*",
 "mns:Send*",
 "mns:Publish*",
 "mns:Subscribe"
],
 "Resource": "*",
 "Effect": "Allow"
 },
 {
 "Action": [
 "drds:DescribeDrdsInstance",
 "drds:ModifyDrdsIpWhiteList"
],
 "Resource": "*",
 "Effect": "Allow"
 },
 {
 "Action": [
 "rds:Describe*",
 "rds:ModifySecurityIps*"
],
 "Resource": "*",
 "Effect": "Allow"
 },
 {
 "Action": [
 "vpc:DescribeVpcs",
 "vpc:DescribeVSwitches"
],
 "Resource": "*",
 "Effect": "Allow"
 },
 {
 "Action": [
 "ecs:CreateSecurityGroup",
 "ecs:AuthorizeSecurityGroup",
 "ecs:CreateNetworkInterface",
 "ecs:DescribeNetworkInterfaces",
 "ecs:AttachNetworkInterface",
 "ecs:DescribeNetworkInterfacePermissions",
 "ecs:CreateNetworkInterfacePermission"
],
 "Resource": "*",
 "Effect": "Allow"
 },
 {
 "Action": "oss:*",
 "Resource": "*",
 "Effect": "Allow"
 }

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Preparation Blink

58 > Document Version: 20231114

]
}

Attach a policy to a RAM role
After you create a RAM role, you can attach a specific policy to the RAM role.

1. Log on to the RAM console.
Log on to the RAM console by using your Alibaba Cloud account.
Log on to the RAM console as a RAM user.

2. In the left-side navigation pane, choose Permissions > Policies.
3. On the Policies page, click Create Policy.
4. On the Create Policy page, configure Name and Note. In this example, the policy name is

AliyunStreamDefaultRolePolicy.
5. In the code editor below Policy Document, enter the following code and click OK:

{
 "Version": "1",
 "Statement": [
 {
 "Action": [
 "vpc:DescribeVpcs",
 "vpc:DescribeVSwitches"
],
 "Resource": "*",
 "Effect": "Allow"
 },
 {
 "Action": [
 "ecs:CreateSecurityGroup",
 "ecs:AuthorizeSecurityGroup",
 "ecs:CreateNetworkInterface",
 "ecs:DescribeNetworkInterfaces",
 "ecs:AttachNetworkInterface",
 "ecs:DescribeNetworkInterfacePermissions",
 "ecs:CreateNetworkInterfacePermission"
],
 "Resource": "*",
 "Effect": "Allow"
 }
]
}

Note You can delete the following permissions after you create a cluster:
ecs:CreateSecurityGroup
ecs:AuthorizeSecurityGroup

6. In the left-side navigation pane, click Roles. On the Roles page, find
AliyunStreamDefaultRole in the role list and click Add Permissions in the Actions
column.

7. In the Add Permissions panel, click Custom Policy in the Select Policy section and enter
AliyunOSSFullAccess in the search box below Custom Policy .

Blink Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Preparation

> Document Version: 20231114 59

https://ram.console.aliyun.com/
https://signin.alibabacloud.com/login.htm

8. Click AliyunOSSFullAccess in the Authorization Policy Name column.
9. In the Add Permissions panel, click Custom Policy in the Select Policy section.

10. In the search box below Custom Policy of the Select Policy section, enter
AliyunStreamDefaultRolePolicy .

11. Click AliyunStreamDefaultRolePolicy in the Authorization Policy Name column.
12. Click OK.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Preparation Blink

60 > Document Version: 20231114

Flink SQL is a programming language that is developed by Alibaba Cloud to simplify the
computing model of Realtime Compute for Apache Flink and to decrease the requirements for
user skills. Flink SQL complies with standard SQL semantics.
This topic describes how to use Flink SQL in Realtime Compute for Apache Flink. The topic
covers the following aspects:

Basic concepts
Keywords
Data types
DDL statements
DML statements
Query statements
Data views
Window functions
Logical functions
Built-in functions
UDXs

This topic describes the reserved keywords in Realtime Compute for Apache Flink and how to
use these keywords.

Common keyword types
Common type Keyword

Data type

VARCHAR
INT
BIGINT
DOUBLE
DATE
BOOLEAN
TINYINT
SMALLINT
FLOAT
DECIMAL
VARBINARY

DDL
CREATE TABLE
CREATE FUNCTION
CREATE VIEW

DML INSERT INTO

5.Blink SQL reference
5.1. Overview

5.2. Keywords

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 61

SELECT clause

SELECT FROM
WHERE
GROUP BY
JOIN

Naming conventions
Names of source tables, result tables, views, and aliases must follow the standard database
naming conventions. The names must start with a letter, and can contain only letters, digits,
and underscores (_).

Reserved keywords
The following combinations of strings are reserved as keywords in Realtime Compute for
Apache Flink. If you want to use any of the following keywords as a field name, enclose the
keyword in backticks (`), for example, `value` .
A,ABS,ABSOLUTE,ACTION,ADA,ADD,ADMIN,AFTER,ALL,ALLOCATE,ALLOW,ALTER,ALWAYS,AND,ANY,ARE,ARRAY
,AS,ASC,ASENSITIVE,ASSERTION,ASSIGNMENT,ASYMMETRIC,AT,ATOMIC,ATTRIBUTE,ATTRIBUTES,AUTHORIZA
TION,AVG,
BEFORE,BEGIN,BERNOULLI,BETWEEN,BIGINT,BINARY,BIT,BLOB,BOOLEAN,BOTH,BREADTH,BY,
C,CALL,CALLED,CARDINALITY,CASCADE,CASCADED,CASE,CAST,CATALOG,CATALOG_NAME,CEIL,CEILING,CENT
URY,CHAIN,CHAR,CHARACTER,CHARACTERISTICTS,CHARACTERS,CHARACTER_LENGTH,CHARACTER_SET_CATALOG
,CHARACTER_SET_NAME,CHARACTER_SET_SCHEMA,CHAR_LENGTH,CHECK,CLASS_ORIGIN,CLOB,CLOSE,COALESCE
,COBOL,COLLATE,COLLATION,COLLATION_CATALOG,COLLATION_NAME,COLLATION_SCHEMA,COLLECT,COLUMN,C
OLUMN_NAME,COMMAND_FUNCTION,COMMAND_FUNCTION_CODE,COMMIT,COMMITTED,CONDITION,CONDITION_NUMB
ER,CONNECT,CONNECTION,CONNECTION_NAME,CONSTRAINT,CONSTRAINTS,CONSTRAINT_CATALOG,CONSTRAINT_
NAME,CONSTRAINT_SCHEMA,CONSTRUCTOR,CONTAINS,CONTINUE,CONVERT,CORR,CORRESPONDING,COUNT,COVAR
_POP,COVAR_SAMP,CREATE,CROSS,CUBE,CUME_DIST,CURRENT,CURRENT_CATALOG,CURRENT_DATE,CURRENT_DE
FAULT_TRANSFORM_GROUP,CURRENT_PATH,CURRENT_ROLE,CURRENT_SCHEMA,CURRENT_TIME,CURRENT_TIMESTA
MP,CURRENT_TRANSFORM_GROUP_FOR_TYPE,CURRENT_USER,CURSOR,CURSOR_NAME,CYCLE,
DATA,DATABASE,DATE,DATETIME_INTERVAL_CODE,DATETIME_INTERVAL_PRECISION,DAY,DEALLOCATE,DEC,DE
CADE,DECIMAL,DECLARE,DEFAULT,DEFAULTS,DEFERRABLE,DEFERRED,DEFINED,DEFINER,DEGREE,DELETE,DEN
SE_RANK,DEPTH,DEREF,DERIVED,DESC,DESCRIBE,DESCRIPTION,DESCRIPTOR,DETERMINISTIC,DIAGNOSTICS,
DISALLOW,DISCONNECT,DISPATCH,DISTINCT,DOMAIN,DOUBLE,DOW,DOY,DROP,DYNAMIC,DYNAMIC_FUNCTION,D
YNAMIC_FUNCTION_CODE,
EACH,ELEMENT,ELSE,END,END-
EXEC,EPOCH,EQUALS,ESCAPE,EVERY,EXCEPT,EXCEPTION,EXCLUDE,EXCLUDING,EXEC,EXECUTE,EXISTS,EXP,E
XPLAIN,EXTEND,EXTERNAL,EXTRACT,
FALSE,FETCH,FILTER,FINAL,FIRST,FIRST_VALUE,FLOAT,FLOOR,FOLLOWING,FOR,FOREIGN,FORTRAN,FOUND,
FRAC_SECOND,FREE,FROM,FULL,FUNCTION,FUSION,
G,GENERAL,GENERATED,GET,GLOBAL,GO,GOTO,GRANT,GRANTED,GROUP,GROUPING,
HAVING,HIERARCHY,HOLD,HOUR,IDENTITY,IMMEDIATE,IMPLEMENTATION,IMPORT,
IN,INCLUDING,INCREMENT,INDICATOR,INITIALLY,INNER,INOUT,INPUT,INSENSITIVE,INSERT,INSTANCE,IN
STANTIABLE,INT,INTEGER,INTERSECT,INTERSECTION,INTERVAL,INTO,INVOKER,IS,ISOLATION,
JAVA,JOIN,
K,KEY,KEY_MEMBER,KEY_TYPE,
LABEL,LANGUAGE,LARGE,LAST,LAST_VALUE,LATERAL,LEADING,LEFT,LENGTH,LEVEL,LIBRARY,LIKE,LIMIT,L
N,LOCAL,LOCALTIME,LOCALTIMESTAMP,LOCATOR,LOWER,
M,MAP,MATCH,MATCHED,MAX,MAXVALUE,MEMBER,MERGE,MESSAGE_LENGTH,MESSAGE_OCTET_LENGTH,MESSAGE_T
EXT,METHOD,MICROSECOND,MILLENNIUM,MIN,MINUTE,MINVALUE,MOD,MODIFIES,MODULE,MONTH,MORE,MULTIS
ET,MUMPS,
NAME,NAMES,NATIONAL,NATURAL,NCHAR,NCLOB,NESTING,NEW,NEXT,NO,NONE,NORMALIZE,NORMALIZED,NOT,N
ULL,NULLABLE,NULLIF,NULLS,NUMBER,NUMERIC,
OBJECT,OCTETS,OCTET_LENGTH,OF,OFFSET,OLD,ON,ONLY,OPEN,OPTION,OPTIONS,OR,ORDER,ORDERING,ORDI

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

62 > Document Version: 20231114

OBJECT,OCTETS,OCTET_LENGTH,OF,OFFSET,OLD,ON,ONLY,OPEN,OPTION,OPTIONS,OR,ORDER,ORDERING,ORDI
NALITY,OTHERS,OUT,OUTER,OUTPUT,OVER,OVERLAPS,OVERLAY,OVERRIDING,
PAD,PARAMETER,PARAMETER_MODE,PARAMETER_NAME,PARAMETER_ORDINAL_POSITION,PARAMETER_SPECIFIC_C
ATALOG,PARAMETER_SPECIFIC_NAME,PARAMETER_SPECIFIC_SCHEMA,PARTIAL,PARTITION,PASCAL,PASSTHROU
GH,PATH,PERCENTILE_CONT,PERCENTILE_DISC,PERCENT_RANK,PLACING,PLAN,PLI,POSITION,POWER,PRECED
ING,PRECISION,PREPARE,PRESERVE,PRIMARY,PRIOR,PRIVILEGES,PROCEDURE,PUBLIC,
QUARTER,
RANGE,RANK,READ,READS,REAL,RECURSIVE,REF,REFERENCES,REFERENCING,REGR_AVGX,REGR_AVGY,REGR_CO
UNT,REGR_INTERCEPT,REGR_R2,REGR_SLOPE,REGR_SXX,REGR_SXY,REGR_SYY,RELATIVE,RELEASE,REPEATABL
E,RESET,RESTART,RESTRICT,RESULT,RETURN,RETURNED_CARDINALITY,RETURNED_LENGTH,RETURNED_OCTET_
LENGTH,RETURNED_SQLSTATE,RETURNS,REVOKE,RIGHT,ROLE,ROLLBACK,ROLLUP,ROUTINE,ROUTINE_CATALOG,
ROUTINE_NAME,ROUTINE_SCHEMA,ROW,ROWS,ROW_COUNT,ROW_NUMBER,
SAVEPOINT,SCALE,SCHEMA,SCHEMA_NAME,SCOPE,SCOPE_CATALOGS,SCOPE_NAME,SCOPE_SCHEMA,SCROLL,SEAR
CH,SECOND,SECTION,SECURITY,SELECT,SELF,SENSITIVE,SEQUENCE,SERIALIZABLE,SERVER,SERVER_NAME,S
ESSION,SESSION_USER,SET,SETS,SIMILAR,SIMPLE,SIZE,SMALLINT,SOME,SOURCE,SPACE,SPECIFIC,SPECIF
ICTYPE,SPECIFIC_NAME,SQL,SQLEXCEPTION,SQLSTATE,SQLWARNING,SQL_TSI_DAY,SQL_TSI_FRAC_SECOND,S
QL_TSI_HOUR,SQL_TSI_MICROSECOND,SQL_TSI_MINUTE,SQL_TSI_MONTH,SQL_TSI_QUARTER,SQL_TSI_SECOND
,SQL_TSI_WEEK,SQL_TSI_YEAR,SQRT,START,STATE,STATEMENT,STATIC,STDDEV_POP,STDDEV_SAMP,STREAM,
STRUCTURE,STYLE,SUBCLASS_ORIGIN,SUBMULTISET,SUBSTITUTE,SUBSTRING,SUM,SYMMETRIC,SYSTEM,SYSTE
M_USER,
TABLE,TABLESAMPLE,TABLE_NAME,TEMPORARY,THEN,TIES,TIME,TIMESTAMP,TIMESTAMPADD,TIMESTAMPDIFF,
TIMEZONE_HOUR,TIMEZONE_MINUTE,TINYINT,TO,TOP_LEVEL_COUNT,TRAILING,TRANSACTION,TRANSACTIONS_
ACTIVE,TRANSACTIONS_COMMITTED,TRANSACTIONS_ROLLED_BACK,TRANSFORM,TRANSFORMS,TRANSLATE,TRANS
LATION,TREAT,TRIGGER,TRIGGER_CATALOG,TRIGGER_NAME,TRIGGER_SCHEMA,TRIM,TRUE,TYPE,
UESCAPE,UNBOUNDED,UNCOMMITTED,UNDER,UNION,UNIQUE,UNKNOWN,UNNAMED,UNNEST,UPDATE,UPPER,UPSERT
,USAGE,USER,USER_DEFINED_TYPE_CATALOG,USER_DEFINED_TYPE_CODE,USER_DEFINED_TYPE_NAME,USER_DE
FINED_TYPE_SCHEMA,USING,
VALUE,VALUES,VARBINARY,VARCHAR,VARYING,VAR_POP,VAR_SAMP,VERSION,VIEW,
WEEK,WHEN,WHENEVER,WHERE,WIDTH_BUCKET,WINDOW,WITH,WITHIN,WITHOUT,WORK,WRAPPER,WRITE,
XML,
YEAR,
ZONE

This topic describes how to configure a time zone for a Realtime Compute for Apache Flink
job to adjust the output data of the DATE and TIME types.

Configure a time zone
Configure a time zone
You can configure a time zone for a Realtime Compute for Apache Flink job, such as
 blink.job.timeZone=America/New_York , to adjust the output data of the DATE and TIME
types. The default time zone is UTC+8.

For more information about time zones, see Supported time zones.
For more information about how to configure a time zone, see Specify job parameters.

Configure different time zones for different source or result tables
You can configure different time zones for different source or result tables. For example, if
you want to read or write data of the TIME, DATE, or TIMESTAMP type in a MySQL database
that uses the America/New_York time zone, but the Asia/Shanghai time zone is used in
the computation of a job, you can set a time zone for the source or result table separately

5.3. Basic concepts
5.3.1. Time zone

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 63

in the following way:

CREATE TABLE mysql_source_my_table (
 -- ...
) WITH (
timeZone='America/New_York'
 -- ...
);

Examples
In Realtime Compute for Apache Flink, the time zones that are used in time zone-related
functions are custom time zones. The custom time zone Asia/Shanghai is used in the
following examples.

Functions that convert values from the STRING type to the TIMESTAMP type:
TO_TIMESTAMP, TIMESTAMP, and UNIX_TIMESTAMP

TO_TIMESTAMP('2020-08-03 10:59:45.957')
-- The output is `2020-08-03 10:59:45.957`.

TIMESTAMP '2020-08-03 10:59:45.957'
-- The output is `2020-08-03 10:59:45.957`.

UNIX_TIMESTAMP('2020-08-03 10:59:45.957')
-- The output is `1596423585`.

Functions that convert values from the TIMESTAMP type to the STRING type: DATE_FORMAT
and FROM_UNIXTIME

Note If the input parameter is of the TIMESTAMP type, the output data varies
based on your custom time zone.

DATE_FORMAT(TO_TIMESTAMP(1596702949000), 'yyyy-MM-dd HH:mm:ss')
-- The output is `2020-08-06 16:35:49`.

DATE_FORMAT('2020-08-06 16:35:49', 'yyyy-MM-dd HH:mm:ss', 'yyyy/MM/dd HH:mm:ss')
-- The output is `2020/08/06 16:35:49`.

FROM_UNIXTIME(1596702949000/1000)
-- The output is `2020-08-06 16:35:49`.

Time-related functions
If the input parameters are of the TIMESTAMP type, the output data of the functions such as
EXTRACT, FLOOR, CEIL, and DATE_DIFF varies based on your custom time zone.

-- 1521503999000 2018-03-19T23:59:59+0000, 2018-03-20T07:59:59+0800
 EXTRACT(DAY FROM TO_TIMESTAMP(1521503999000))
-- The output is `20`. This value indicates the twentieth day of the month in the UTC
+8 time zone.

Functions used to calculate the current time
Functions used to calculate the current time, including LOCALTIMESTAMP() ,
 CURRENT_TIMESTAMP() , NOW() , and UNIX_TIMESTAMP()

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

64 > Document Version: 20231114

-- The current time is 2020-08-03 10:59:45 in the Asia/Shanghai time zone.

LOCALTIMESTAMP
-- The output is `2020-08-03 10:59:45.957`.

CURRENT_TIMESTAMP
-- The output is `2020-08-03 10:59:45.957`.

NOW()
-- The output is `1596423585`.

UNIX_TIMESTAMP()
-- The output is `1596423585`.

Functions used to calculate data of the DATE and TIME types
In Flink SQL, data of the DATE and TIME types is expressed and calculated as integers. A
DATE value refers to the number of days that have elapsed after 00:00:00 Thursday, 1
January 1970. A TIME value refers to the number of milliseconds that have elapsed after
00:00:00 on the current day of your time zone. If data of the DATE and TIME types is
calculated in user-defined functions (UDFs), a time zone offset is added to the Java object
when data of the INT type is converted to the java.sql.Date or java.sql.Time type.

Supported time zones
For more information about the time zones that are supported by Realtime Compute for
Apache Flink, see Time zones.

This topic describes the following time attributes that are supported by Blink SQL: event time
and processing time.
Apache Flink supports three time attributes for the processing of streaming data: processing
time, event time, and ingestion time.Blink SQL supports only two of the three time attributes:

Event time: the event time that you provide in the data store. In most cases, the event time
is the original time when the data is created.
Processing time: the local system time when the system processes an event. The unit is
milliseconds.

Event Time
The event time is also known as rowtime. The event time attribute must be declared in the
data definition language (DDL) statement that you execute to create a source table. You can
declare a field in the source table as the rowtime field. Note that you can declare a field of
only the TIMESTAMP type as the rowtime field. In the future, you can declare a field of the
LONG type as the rowtime field. If the source table does not contain a TIMESTAMP column,
you can use a computed column to create a TIMESTAMP column based on an existing column.
For more information, see Computed column.
In some scenarios, the order in which data records are received may be different from the
order in which they are processed. The possible causes include out-of-order input data and
network jitters. The network jitters may be caused by network congestions and transmission
latencies. Before you define a rowtime field, define a computing method for watermarks in an
explicit way. For more information, see Watermark.
In the following example, data is aggregated by using event time-based window functions:

5.3.2. Time attributes

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 65

https://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/130174/cn_zh/1565675309038/TimeZone.txt

CREATE TABLE tt_stream (
 a VARCHAR,
 b VARCHAR,
 ts TIMESTAMP,
 WATERMARK wk1 FOR ts as withOffset (ts, 1000) --Define a computing method for waterma
rks.
) WITH (
 type = 'sls',
 topic = '<yourTopicName>',
 accessId = '<yourAccessId>',
 accessKey = '<yourAccessSecret>'
);
CREATE TABLE rds_output (
 id VARCHAR,
 win_start TIMESTAMP,
 win_end TIMESTAMP,
 cnt BIGINT
) WITH (
 type = 'rds',
 url = 'jdbc:mysql://****3306/test',
 tableName = '<yourTableName>',
 userName = '<yourUserName>',
 password = '<yourPassword>'
);
INSERT
 INTO rds_output
SELECT
 a AS id,
 SESSION_START (ts, INTERVAL '1' SECOND) AS win_start,
 SESSION_END (ts, INTERVAL '1' SECOND) AS win_end,
 COUNT (a) AS cnt
FROM
 tt_stream
GROUP
 BY SESSION (ts, INTERVAL '1' SECOND),
 a

Processing Time
The processing time is generated by the system and is not included in the raw data.
Therefore, you must explicitly define a processing time column when you declare the source
table.
filedName as PROCTIME()

In the following example, processing time-based window functions are used to aggregate
data:

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

66 > Document Version: 20231114

CREATE TABLE mq_stream (
 a VARCHAR,
 b VARCHAR,
 c BIGINT,
 ts AS PROCTIME () --Explicitly define a processing time column when you declare the
source table.
) WITH (
 type = 'mq',
 topic = '<yourTopic>',
 accessId = '<yourAccessId>',
 accessKey = '<yourAccessSecret>'
);
CREATE TABLE rds_output (
 id VARCHAR,
 win_start TIMESTAMP,
 win_end TIMESTAMP,
 cnt BIGINT
) with (
 type = 'rds',
 url = '<yourDatebaseURL>',
 tableName = '<yourDatabasTableName>',
 userName = '<yourUserName>',
 password = '<yourPassword>'
);
INSERT
 INTO rds_output
SELECT
 a AS id,
 SESSION_START (ts, INTERVAL '1' SECOND) AS win_start,
 SESSION_END (ts, INTERVAL '1' SECOND) AS win_end,
 COUNT (a) AS cnt
FROM
 mq_stream
GROUP
 BY SESSION (ts, INTERVAL '1' SECOND),
 a

Expiration of time attributes
The time attribute of fields no longer takes effect after one of the following operations is
completed:

GROUP BY operations on the fields that are not defined as time attribute fields, except the
GROUP BY operations in tumbling, sliding, and session windows. For more information, see
TUMBLE, HOP, and SESSION.
JOIN operations on two data streams.

Note For more information, see JOIN statements.

MATCH_RECOGNIZE operations in complex event processing (CEP) statements. For more
information, see CEP statements.
PARTITION BY operations in OVER windows. For more information, see OVER windows.
UNION operations. UNION is equivalent to the combination of RETRACT and UNION ALL.

If you use time-based window functions for computing after the preceding operations, errors

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 67

are returned, such as org.apache.flink.table.api.ValidationException: Window can only be
defined over a time attribute column.

Realtime Compute for Apache Flink aggregates data by using window functions based on the
time attribute. To use window functions based on the event time of a job, you must define a
watermark when you declare a source table.
A watermark is used to measure the progress of Event Time. It is a hidden data attribute. A
watermark is defined in the DDL statement of the source table. Flink provides the following
statement to define a watermark:
WATERMARK [watermarkName] FOR <rowtime_field> AS withOffset(<rowtime_field>, offset)

Note For more information about the time attributes of Realtime Compute for
Apache Flink, see Time attributes.

Parameter Required Description

watermarkName No The name of the watermark.

<rowtime_field> Yes

The column used to generate the watermark.
<rowtime_field> is identified as the event time
column and must be a column of the TIMESTAMP
type defined in the table. You can use
<rowtime_field> to define a window in the job
code.

withOffset Yes

The policy to generate a watermark. In this
example, the watermark value is generated by
using the following formula: <rowtime_field>
- offset . The first parameter in
 withOffset must be <rowtime_field>.

offset Yes The offset between the watermark value and
event time, in milliseconds.

A specific field in a data record indicates the time when the record was generated. For
example, a table contains a rowtime field whose data type is TIMESTAMP, and one of its
values is 1501750584000 (2017-08-03 08:56:24.000) . If you want to define a watermark
based on the rowtime field and configure a 4-second offset, add the following definition:
WATERMARK FOR rowtime AS withOffset(rowtime, 4000)

In this example, the watermark time of the data record is 1501750584000 - 4000 =
1501750580000 (2017-08-03 08:56:20.000) . This means that all data whose timestamp is
earlier than 1501750580000 (2017-08-03 08:56:20.000) has arrived.

5.3.3. Watermark

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

68 > Document Version: 20231114

Note
If you use an event time-based watermark, the rowtime field must be of the
TIMESTAMP type. Realtime Compute for Apache Flink supports 13-digit UNIX
timestamps in milliseconds. If the rowtime field is of another type or the UNIX
timestamp is not 13 digits in length, we recommend that you use a computed
column to convert the time. For more information, see Computed column.
The event time and processing time can only be declared in the source table. For
more information, see Event Time and Processing Time.

Summary
A watermark indicates that all the events whose timestamp t' is earlier than the watermark
time t (t'< t) have occurred. After the watermark time t takes effect, all
subsequently received data records whose event time is earlier than t are discarded.
Realtime Compute for Apache Flink will allow you to change the configuration and update
the subsequent data.
Watermarks are important for data streams that arrive out of order because the
watermarks help ensure that the computing in a window is correct even if some events
arrive late.
If an operator has multiple input data streams for parallel processing, the event time of the
data stream with the shortest time is used as the event time of the operator.

You can calculate a value for a computed column by using data from other columns. If your
source table does not have a column of the TIMESTAMP type, you can use a computed column
to convert a field of another type to the TIMESTAMP type.

Concept
A computed column is a virtual column that is not stored in a physical table. You can create
computed columns by using expressions, built-in functions, or user-defined extensions
(UDXs). In Flink SQL, a computed column can be used the same as columns that are stored in
a physical table.

Usage
Currently, the event time (also known as rowtime) column in a Watermark must be of the
TIMESTAMP type. The LONG data type will be supported in the future. You can only define a
watermark in the DDL statement of a source table. If a source table does not have a column
of the TIMESTAMP type, you can use a computed column to convert a field of another type to
the TIMESTAMP type.

Syntax
column_name AS computed_column_expression

Example
The rowtime column in a watermark must be of the TIMESTAMP type. Currently, Realtime
Compute only supports 13-bit UNIX timestamps measured in milliseconds. If the TIME column
in a DataHub source table is defined as a 16-bit UNIX timestamp measured in microseconds,
you can use a computed column to convert the 16-bit UNIX timestamp to a 13-bit UNIX
timestamp. The sample code is as follows:

5.3.4. Computed column

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 69

CREATE TABLE test_stream(
 a INT,
 b BIGINT,
 `TIME` BIGINT,
 ts AS TO_TIMESTAMP(`TIME`/1000), -- Use a computed column to convert 16-bit timestamp
s to 13-bit timestamps.
 WATERMARK FOR ts AS WITHOFFSET(ts, 1000)
) WITH (
 type = 'datahub',
 ...
);

The `TIME` field in the source table contains the date and time information. The value of
this field is of the BIGINT type. A computed column is created to convert the TIME column
of the BIGINT type to the ts column of the TIMESTAMP type. The ts column is used as
the rowtime of a watermark.

This topic describes the data types that are supported by Realtime Compute for Apache Flink
and how to convert between different data types.

Data types supported by Realtime Compute for Apache Flink
Data type Description Value range

VARCHAR Stores strings of varying length. A VARCHAR string can store a maximum of
4 MB of data.

BOOLEAN Stores logical values. Valid values: TRUE, FALSE, and UNKNOWN.

TINYINT Stores tiny integers. Each tiny
integer occupies 1 byte. -128 to 127 .

SMALLINT Stores small integers. Each
small integer occupies 2 bytes. -32768 to 32767 .

INT Stores integers. Each integer
occupies 4 bytes. -2147483648 to 2147483647 .

BIGINT Stores big integers. Each big
integer occupies 8 bytes.

 -9223372036854775808 to
9223372036854775807 .

FLOAT
Stores single-precision floating-
point numbers. Each single-
precision floating-point number
occupies 4 bytes.

Each single-precision floating-point number
is accurate to six decimal places.

5.4. Data types
5.4.1. Data type conversion

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

70 > Document Version: 20231114

DECIMAL

Stores the numbers that have
the fixed precision and scale.
The precision specifies the total
number of digits both to the left
and to the right of the decimal
point. The scale specifies the
number of digits to the right of
the decimal point.

For example, the value of
 DECIMAL(5,2) is 123.45 .

DOUBLE
Stores double-precision
floating-point numbers. Each
double-precision floating-point
number occupies 8 bytes.

Each double-precision floating-point
number is accurate to 15 decimal places.

DATE Stores dates. Example value: DATE'1969-07-20' .

TIME Stores time. Example value: TIME '20:17:40' .

TIMESTAMP
Stores timestamps. Each
timestamp contains both date
and time.

Example value: TIMESTAMP '1969-07-20
20:17:40' .

VARBINARY Stores binary data.

This type corresponds to the byte[]
array.

Note The storage size for the
VARBINARY data type is not limited.

Data type conversion

Example
Test data

var1 (VARCHAR) big1 (BIGINT)

1000 323

Test statements

cast (var1 as bigint) as AA;
cast (big1 as varchar) as BB;

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 71

Test results

AA (BIGINT) BB (VARCHAR)

1000 323

This topic describes mathematical and logical operations between different data types in
Realtime Compute for Apache Flink.

Note The data types of numeric1 and numeric2 in a mathematical operation must
be the same.

Mathematical operation Description
Data types supported
by numeric1 and
numeric2

Example

numeric1 + numeric2
Returns the sum of two
numbers in a
mathematical operation.

INT
DOUBLE
DECIMAL
BIGINT

 2+4.2

numeric1 - numeric2
Returns the difference
between two numbers in a
mathematical operation.

 3-5.3

numeric1 * numeric2
Returns the product of two
numbers in a
mathematical operation.

 2*4

numeric1 / numeric2
Returns the quotient of
two numbers in a
mathematical operation.

 2.4/5

numeric1 > numeric2
Checks whether the first
number is greater than
the second number in a
mathematical operation.

 2.4>5

numeric1 < numeric2
Checks whether the first
number is less than the
second number in a
mathematical operation.

 2.4<5

numeric1 >= numeric2

Checks whether the first
number is greater than or
equal to the second
number in a mathematical
operation.

 2.4>=5

numeric1 <= numeric2

Checks whether the first
number is less than or
equal to the second
number in a mathematical
operation.

 2.4<=5

5.4.2. Mathematical and logical operations
between data types

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

72 > Document Version: 20231114

numeric1 = numeric2
Checks whether the two
numbers in a
mathematical operation
are equal to each other.

INT
DOUBLE
DECIMAL
BIGINT
VARCHAR

 'iphone'
= 5

numeric1 <> numeric2

Checks whether the two
numbers in a
mathematical operation
are not equal to each
other.

 'iphone'
<> 5

This topic describes how to create a data view in Realtime Compute for Apache Flink to
simplify the development process.

Background information
If your business logic is complex, you must write nested statements in a DML statement,
which makes it difficult to locate a problem. To simplify the development process, you can
define a data view and write nested statements to the data view.

Note A data view displays a logical table that describes the computing logic. It
does not physically store data.

Syntax
CREATE VIEW viewName[(columnName[, columnName]*)] AS queryStatement;

viewName: the name of the view.
columnName: the name of the field.
queryStatement: the alias of the nested statement.

Example 1
CREATE VIEW LargeOrders (r, t, c, u) AS
SELECT
 rowtime,
 productId,
 c,
 units
FROM
 orders;

INSERT INTO
 rds_output
SELECT
 r,
 t,
 c,
 u
FROM
 LargeOrders;

5.5. Create a data view

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 73

Example 2
Test data

a (VARCHAR) b (BIGINT) c (TIMESTAMP)

test1 1 1506823820000

test2 1 1506823850000

test1 1 1506823810000

test2 1 1506823840000

test2 1 1506823870000

test1 1 1506823830000

test2 1 1506823860000

Test statements

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

74 > Document Version: 20231114

CREATE TABLE datahub_stream (
 a VARCHAR,
 b BIGINT,
 c TIMESTAMP,
 d AS PROCTIME()
) WITH (
 TYPE='datahub',
 ...
);

CREATE TABLE rds_output (
 a VARCHAR,
 b TIMESTAMP,
 cnt BIGINT,
 PRIMARY KEY(a)
)WITH(
 TYPE = 'rds',
 ...
);

CREATE VIEW rds_view AS
SELECT a,
 CAST(
 HOP_START(d, INTERVAL '5' SECOND, INTERVAL '30' SECOND) AS TIMESTAMP
) AS cc,
 SUM(b) AS cnt
FROM
 datahub_stream
GROUP BY
 HOP(d, INTERVAL '5' SECOND, INTERVAL '30' SECOND),a;

INSERT INTO
 rds_output
SELECT
 a,
 cc,
 cnt
FROM
 rds_view
WHERE
 cnt=4;

Test results

a(VARCHAR) b (TIMESTAMP) cnt (BIGINT)

test2 2017-11-06 16:54:10 4

5.6. DDL statements
5.6.1. Overview

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 75

This topic describes the data definition language (DDL) syntax that is supported by Realtime
Compute for Apache Flink, and the field mapping and case sensitivity issues that require your
attention when you use DDL.

Syntax
CREATE TABLE tableName
 (columnName dataType [, columnName dataType]*)
 [WITH (propertyName=propertyValue [, propertyName=propertyValue]*)];

Description
Realtime Compute for Apache Flink does not store data. All the DDL statements that are
executed to create tables declare references to external tables and data stores.
CREATE TABLE mq_stream(
 a VARCHAR,
 b VARCHAR,
 c VARCHAR
) WITH (
 type='mq',
 topic='blink_mq_test',
 accessID='<yourAccessID>',
 accessKey='<yourAccessSecret>'
);

The preceding code does not create a topic of the Message Queue source table in Flink SQL.
Instead, the code is used to declare a reference to the mq_stream table. For all the
downstream data manipulation language (DML) operations on the Message Queue topic
 blink_mq_test , you can replace the topic name with the alias mq_stream . When you
declare references to external tables, pay attention to the following points:

In Realtime Compute for Apache Flink, a declaration of a table is valid only for the current
job. A Realtime Compute for Apache Flink job is generated after you submit an SQL file.
Therefore, the preceding declaration related to the mq_stream table is valid only for the
current SQL file. Different SQL files in the same Realtime Compute for Apache Flink project
can declare reference of the mq_stream table.
Based on the standard SQL definitions, keywords, table names, and column names in DDL
statements are not case-sensitive.
The names of tables and columns must start with a letter, and can contain only letters,
digits, and underscores (_).
DDL declarations may establish the field mappings between the declaration table and the
external table based on field names or other factors. This depends on the nature of the
upstream plug-in that is used. To prevent data errors caused by inaccurate definitions, we
recommend that you use the same field names and field quantity in your declaration as
those in the referenced external tables.

Note
If upstream and downstream plug-ins support retrieving values based on keys,
the declared table and its referenced external table can have different field
quantity. However, the field names must be the same.
If the upstream and downstream plug-ins do not support retrieving values based
on keys, the declaration table and its referenced external table must have the
same number and sequence of fields.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

76 > Document Version: 20231114

Field mapping
A declared table supports the following two field mapping methods based on whether its
external data source has a schema:

Sequence mapping
This method applies to data sources that have no schema, such as Message Queue. These
data sources are usually unstructured storage systems that do not support retrieving
values based on keys. We recommend that you customize field names in DDL SQL
statements and use the same field types and field quantity in the declared table as those in
the external table.
The following record in Message Queue is used as an example:

asavfa,sddd32,sdfds

Specify Message Queue field names based on the naming conventions.

CREATE TABLE mq_stream(
 a VARCHAR,
 b VARCHAR,
 c VARCHAR
) WITH (
 type='mq',
 topic='blink_mq_test',
 accessID='<yourAccessID>',
 accessKey='<yourAccessSecret>'
);

Name mapping
This method applies to data sources that have a schema. These data sources define field
names and field types at the table storage level and support retrieving values based on
keys. We recommend that you use the same schema definitions in Flink SQL declarations
as those of the external storage system. Specifically, the names, number, and sequence of
fields in the declaration table must be the same as those in the external table.

Note If field names in an external storage system such as Tablestore are case-
sensitive, you must enclose the field names in grave accents (`). In the DDL syntax,
field names in the declaration table must be the same as those in the external table.

Case sensitivity
Realtime Compute for Apache Flink adopts standard SQL statements. Therefore, fields are not
case-sensitive. For example, the following two statements have the same meaning:
create table stream_result (
 name varchar,
 value varchar
);

create table STREAM_RESULT (
 NAME varchar,
 VALUE varchar
);

However, fields in some external data sources that are referenced by Realtime Compute for
Apache Flink are case-sensitive, such as Tablestore. The following statement defines the

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 77

uppercase NAME field for Tablestore.
create table STREAM_RESULT (
 `NAME` varchar,
 `VALUE` varchar
);

In all subsequent DML statements, enclose the field in grave accents (`) if the field is
referenced. In the following example, the sample code is provided.
INSERT INTO tableA
SELECT
 `NAME`,
 `VALUE`
FROM
 tableB;

References
For more information about how to create source tables, dimension tables, and result tables
in Realtime Compute for Apache Flink, see the following topics:

Overview of source tables
Overview of result tables
Overview

In Realtime Compute, source tables store streaming data. Streaming data storage triggers
stream processing jobs in Realtime Compute. To perform stream processing, you must create
at least one source table that provides streaming data for each Realtime Compute job.

Syntax
 CREATE TABLE tableName
 (columnName dataType [, columnName dataType]*)
 [WITH (propertyName=propertyValue [, propertyName=propertyValue]*)];

Example

5.6.2. Create a source table
5.6.2.1. Overview of source tables

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

78 > Document Version: 20231114

CREATE TABLE metaq_stream(
 x VARCHAR,
 y VARCHAR,
 z VARCHAR
) WITH (
 type='mq',
 topic='<yourTopicName>',
 endpoint='<yourEndpoint>',
 pullIntervalMs='1000',
 accessId='<yourAccessId>',
 accessKey='<yourAccessSecret>',
 startMessageOffset='1000',
 consumerGroup='<yourConsumerGroupName>',
 fieldDelimiter='|'
);

Obtain attribute fields of a source table
Syntax
Realtime Compute provides the HEADER keyword in the DDL statement of a source table
for you to obtain the attribute fields from the source table.

CREATE TABLE sourcetable
(
 `timestamp` VARCHAR HEADER,
 name VARCHAR,
 MsgID VARCHAR
)WITH(
 type='<yourSourceTableType>'
);

In this example, the 'timestamp' field is defined as HEADER . Realtime Compute reads
the values of attribute fields from the source table. Then, the 'timestamp' field is used as a
common field.

Note The default attribute fields vary depending on the source table type, such
as DataHub, Log Service, and Message Queue (MQ). You can customize attribute fields
for certain types of source tables. For more information, see the topics about source
tables of the related type.

Example
The following table uses a source table of Log Service to describe how to obtain attribute
fields of the source table. Currently, a source table of Log Service has three attribute fields
listed in the following table.

Field name Description

 __source__ The message source.

 __topic__ The message topic.

 __timestamp__ The time when a log was generated.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 79

Note To obtain attribute fields of a source table, you must add the HEADER
keyword to the end of a field declaration.

The example is as follows:
Test data

__topic__: ens_altar_flow
 result: {"MsgID":"ems0a","Version":"0.0.1"}

Test statements

CREATE TABLE sls_log (
 __topic__ VARCHAR HEADER,
 result VARCHAR
)WITH(
 type ='sls'
);
CREATE TABLE sls_out (
 name varchar,
 MsgID varchar,
 Version varchar
)WITH(
 type ='RDS'
);
INSERT INTO sls_out
SELECT
__topic__,
JSON_VALUE(result,'$.MsgID'),
JSON_VALUE(result,'$.Version')
FROM
sls_log

Test results

name (VARCHAT) MsgID (VARCHAT) Version (VARCHAT)

ens_altar_flow ems0a 0.0.1

Source tables with window functions
Realtime Compute aggregates data in windows based on two time attributes: event time and
processing time. For more information, see Event Time and Processing Time. If window
functions are used in a Realtime Compute job, you must define a watermark and computed
column in the DDL statement of a source table. For more information, see Watermark and
Computed column. For more information about data aggregation based on time attributes in
Realtime Compute, see Time attributes.

Supported source table types
Realtime Compute allows you to create multiple types of source tables. For more information,
see the following topics:

Create a Log Service source table
Create a ApsaraMQ for RocketMQ source table
Create a Message Queue for Apache Kafka source table
Create a Tablestore source table

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

80 > Document Version: 20231114

Create a full MaxCompute source table

This topic describes how to create an Oracle database source table. It also describes the
parameters in the WITH clause, data type mapping, sample code, and FAQ involved when you
create an Oracle database source table.

Important
This topic applies only to Blink 3.4.X and later.
You can create Oracle database source tables only when you use Oracle 11g.
You cannot change the number of concurrent jobs for an Oracle database source
table. By default, only one job is allowed for a source table.

Syntax
In Realtime Compute for Apache Flink, you can use an Oracle database to store input data.
The following code shows an example:
create table oracle_source (
 EMPLOYEE_ID BIGINT,
 START_DATE TIMESTAMP,
 END_DATE TIMESTAMP,
 JOB_ID VARCHAR,
 DEPARTMENT_ID VARCHAR
) with (
 type = 'oracle',
 url = 'jdbc:oracle:thin:@//127.0.0.1:1521/ORACLE',
 userName = 'userName',
 password = 'password',
 dbName = 'hr',
 tableName = 'job_history',
 timeField = 'START_DATE',
 startTime = '2007-1-1 00:00:00'
);

Parameters in the WITH clause

Parameter Description Requi
red Remarks

type The type of the source table. Yes Set the value to oracle.

url The connection string of the
database. Yes

The value of this parameter is in the
 jdbc:oracle:thin:@//Database IP
address:Port number/Database
name format. Example:
jdbc:oracle:thin:@//127.0.0.1:1521/XE.

userName The username that is used to log
on to the database. Yes None.

password The password that is used to log
on to the database. Yes None.

5.6.2.2. Create an Oracle database source table

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 81

tableName

The name of the table in the
database. Database table names
can be in one of the following
formats:

Table name 1,Table name 2
Database name.Table name
1,Table name 2

Note Multiple table
names are separated by
commas (,).

Yes table1,table2
db1.table1,table2

timeField The time when the database was
updated. Yes None.

dbName The database name. No
If you have specified the tableName
parameter, you do not need to specify
the dbName parameter.

startTime The start time of reading data
from the source table. No 2019-5-15 00:00:00

timeZone The time zone of the database. No Asia/Shanghai", "UTC

queryTime
RangeMs

The time that is taken for data
retrieval. Unit: milliseconds.

Note The value of
the queryTimeRangeMs
parameter must be greater
than the value of the
queryIntervalMs
parameter.

No Default value: 5000.

queryInter
valMs

The interval at which data is
queried from the database. Unit:
milliseconds.

No Default value: 100.

connection
MaxActive

The maximum number of active
connections. No Default value: 10.

maxRetry The maximum number of retries
upon a connection failure. No Default value: 3.

escapeFiel
ds

Specifies whether to escape field
names in the database. No

Valid values:
false: not case-sensitive. This is the
default value.
true: case-sensitive.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

82 > Document Version: 20231114

lengthChe
ck

The policy for checking the
number of fields that are parsed
from a row of data.

No

Valid values:
NONE: This is the default value.

If the number of fields parsed
from a row of data is greater than
the defined number of fields, data
is extracted from left to right
based on the order of defined
fields.
If the number of fields parsed
from a row of data is less than the
defined number of fields, the
current row is skipped.

SKIP: If the number of fields parsed
from a row of data is different from
the defined number of fields, the
current row is skipped.
EXCEPTION: If the number of fields
parsed from a row of data is
different from the defined number of
fields, an error is returned.
PAD:

If the number of fields parsed
from a row of data is greater than
the defined number of fields, data
is padded from left to right based
on the order of defined fields.
If the number of fields parsed
from a row of data is less than the
defined number of fields, the
values of the missing fields are
padded with null from left to right.

columnErr
orDebug

Specifies whether the debugging
feature is enabled.

Note If the
debugging feature is
enabled, the system displays
the logs that record the
parse failures.

No Default value: false.

Mapping between field data types

Data type of the Oracle database Data type of Realtime Compute for Apache
Flink

CHAR
VARCHAR
VARCHAR2

VARCHAR

FLOAT DOUBLE

NUMBER BIGINT

DECIMAL DECIMAL

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 83

Sample code
The following example shows how to create an Oracle database source table in a Realtime
Compute for Apache Flink job.
create table oracle_source (
 EMPLOYEE_ID BIGINT,
 START_DATE TIMESTAMP,
 END_DATE TIMESTAMP,
 JOB_ID VARCHAR,
 DEPARTMENT_ID VARCHAR
) with (
 type = 'oracle',
 url = 'jdbc:oracle:thin:@//127.0.0.1:1521/ORACLE',
 userName = 'userName',
 password = 'password',
 dbName = 'hr',
 tableName = 'job_history',
 timeField = 'START_DATE',
 startTime = '2007-1-1 00:00:00'
);

create table test_out(
 EMPLOYEE_ID BIGINT,
 START_DATE TIMESTAMP,
 END_DATE TIMESTAMP,
 JOB_ID VARCHAR,
 DEPARTMENT_ID VARCHAR
) with (
 type='print'
);

INSERT INTO test_out
SELECT
 EMPLOYEE_ID,
 START_DATE,
 END_DATE,
 JOB_ID,
 DEPARTMENT_ID
from oracle_source;

FAQ
Q: What do I do if no data is found?
A: The data cannot be found because Blink is faulty. To check whether Blink is faulty, view the
 Round start:[{}], end:[{}] and Round read records logs on the TaskManager tab. If the
logs do not contain data, Blink is faulty.

Note
 Round start:[{}], end:[{}] : displays the start time of the queried data.
 Round read records : displays the queried data records.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

84 > Document Version: 20231114

This topic describes how to create a Hologres source table. It also describes data definition
language (DDL) syntax, parameters in the WITH clause, data type mapping, and sample code
used when you create a Hologres source table.

Limits
This topic applies only to Blink 3.6.0 and later. If you use Blink 3.6.0 or its earlier version, we
recommend that you update your Blink version to 3.7.0 or later.

Usage notes
You can use Hologres source tables to process streaming data and batch data.
Hologres source tables support projection pushdown. This allows you to read data only from
the required columns in the Hologres source tables.
Blink jobs execute snapshot statements to read existing data from Hologres source tables
at a high rate. After the read operation is complete, the jobs end. If the jobs fail to read
data, they try to read the data again.
Parallel Blink jobs can read data from one or more Hologres shards. We recommend that
the number of parallel Blink jobs be no more than the number of Hologres shards.
If you want to use Realtime Compute for Apache Flink to consume data of Hologres source
tables in real time, you must enable the binary logging feature. For more information about
how to enable the binary logging feature, see Subscribe to Hologres binary logs.

Introduction to Hologres
Hologres is compatible with the PostgreSQL protocol and closely connected to the big data
ecosystem. Hologres allows you to analyze and process petabytes of data in high parallelism
and low latency scenarios. Hologres provides an easy method for you to use the existing
business intelligence (BI) tools to perform multidimensional analysis and explore your
business.

DDL syntax
create table mysource(
 name varchar,
 age BIGINT,
 birthday BIGINT
) with (
 type='hologres',
 dbname='...',
 tablename='...',
 username='...',
 password='...',
 endpoint='...',
 field_delimiter='...' -- This parameter is optional.
);

Parameters in the WITH clause

Parameter Description Required Remarks

5.6.2.3. Create a Hologres source table

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 85

https://www.alibabacloud.com/help/en/hologres/user-guide/subscribe-to-hologres-binary-logs

type The type of the source table. Yes Set the value to
hologres.

dbname The name of the database. Yes N/A.

tablename

The name of the table.

Note
If the public schema is not
used, you must set the
tableName parameter to
schema.tableName.

Yes N/A.

username
The username that is used to log
on to the database. You must
enter the AccessKey ID of your
Alibaba Cloud account.

Yes N/A.

password
The password that is used to log
on to the database. You must
enter the AccessKey secret of
your Alibaba Cloud account.

Yes N/A.

endpoint The endpoint of Hologres. Yes
For more information,
see Endpoints for
connecting to
Hologres.

field_delimiter

The delimiter used between rows
when data is being exported.

Important
Delimiters cannot be
inserted into the data.

Yes Default value:
"\u0002".

bulkread
Specifies whether to read full
data from a column-oriented
table.

No

Valid values:
true: Realtime
Compute for Apache
Flink reads full data
from a column-
oriented table.
false: Realtime
Compute for Apache
Flink does not read
full data from a
column-oriented
table.

Data data mapping

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

86 > Document Version: 20231114

https://www.alibabacloud.com/help/en/hologres/user-guide/endpoints-for-connecting-to-hologres

Hologres BLINK

INT INT

INT[] ARRAY<INT>

BIGINT BIGINT

BIGINT[] ARRAY<BIGINT>

REAL FLOAT

REAL[] ARRAY<FLOAT>

DOUBLE PRECISION DOUBLE

DOUBLE PRECISION[] ARRAY<DOUBLE>

BOOLEAN BOOLEAN

BOOLEAN[] ARRAY<BOOLEAN>

TEXT VARCHAR

TEXT[] ARRAY<VARCHAR>

NUMERIC DECIMAL

DATE DATE

TIMESTAMP WITH TIMEZONE TIMESTAMP

Sample code
The following sample code shows how to create a Hologres source table in a Realtime
Compute for Apache Flink job.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 87

create table mysource(
 name varchar,
 age BIGINT,
 birthday BIGINT
) with (
 type='hologres',
 dbname='...',
 tablename='...',
 username='...',
 password='...',
 endpoint='...',
 field_delimiter='...' -- This parameter is optional.
);

create table print_output(
 a varchar,
 b BIGINT,
 c BIGINT
) with (
 type='print'
);

INSERT INTO print_output
SELECT
 a, b, c
from mysource;

This topic describes how to create a Log Service source table in Realtime Compute for
Apache Flink. This topic also describes the attribute fields, parameters in the WITH clause,
and data type mappings used when you create a Log Service source table.

Important
This topic applies only to Blink 1.4.5 and later.

What is Log Service?
Log Service is an end-to-end data logging service that is developed by Alibaba Cloud. The
data format of Log Service is similar to JSON. The following code shows an example:

{
 "a": 1000,
 "b": 1234,
 "c": "li"
}

Log Service stores streaming data. Therefore, Realtime Compute for Apache Flink can use Log
Service tables as result tables for the processing of streaming data.

5.6.2.4. Create a Log Service source table

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

88 > Document Version: 20231114

DDL syntax
The following sample code describes how to create a Log Service source table in a data
definition language (DDL) statement. In the code, sls indicates Log Service.

create table sls_stream(
 a INT,
 b INT,
 c VARCHAR
) with (
 type ='sls',
 endPoint ='http://cn-hangzhou-share.log.aliyuncs.com',
 accessId ='<yourAccessId>',
 accessKey ='<yourAccessKey>',
 startTime = '2017-07-05 00:00:00',
 project ='<yourProjectName>',
 logStore ='<yourLogStoreName>',
 consumerGroup ='<yourConsumerGroupName>'
);

Parameters in the WITH clause

Parameter Description
Re
qui
red

Remarks

type The type of the source
table. Yes Set the value to sls.

endPoint The endpoint of Log
Service. Yes Endpoints.

accessId
The AccessKey ID that is
used to access Log
Service.

Yes N/A.

accessKey
The AccessKey secret that
is used to access Log
Service.

Yes N/A.

project
The name of the Log
Service project from which
data is read.

Yes N/A.

logStore The name of the Logstore
in the Log Service project. Yes N/A.

startTime The time at which logs
start to be consumed. No N/A.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 89

https://www.alibabacloud.com/help/en/sls/developer-reference/endpoints

consumerGroup The name of a consumer
group. No

You can specify this parameter based on
your business requirements. The format
of the name is not fixed.

heartBeatIntervalM
ills

The heartbeat interval of
the consumer client. No Default value: 10000. Unit: milliseconds.

maxRetryTimes The maximum number of
retries for reading data. No Default value: 5.

batchGetSize
The number of log items
that are read from a log
group at a time.

No Default value: 100.

columnErrorDebug Specifies whether to
enable debugging. No

Default value: false. This indicates that
debugging is disabled. If you enable
debugging, logs that contain parsing
exceptions are printed.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

90 > Document Version: 20231114

startupMode
Specifies whether to
enable the consumption
mode.

No

Valid values:
TIMESTAMP: Realtime Compute for
Apache Flink starts to consume data
from a specified time point in each
shard. This is the default value.
Earliest: Realtime Compute for Apache
Flink starts to consume data from the
earliest offset in each shard.
Latest: Realtime Compute for Apache
Flink starts to consume data from the
latest offset in each shard.
Group_Offsets: Realtime Compute for
Apache Flink preferentially consumes
data from the checkpoint that is stored
on the server in each shard. You must
specify the consumerGroup parameter.
The consumption mode varies based
on the following scenarios:

If recovery from the Flink state is
successful, Realtime Compute for
Apache Flink starts to consume data
from the checkpoint of the Flink
state.
If recovery from the Flink state fails,
the consumption mode varies based
on the following scenarios:

If a checkpoint is available for the
specified consumer group,
Realtime Compute for Apache
Flink attempts to consume data
from this checkpoint.
If no checkpoint is available for
the specified consumer group, the
consumption mode varies based
on the following scenarios:

If you specify startTime,
Realtime Compute for Apache
Flink starts to consume data at
the specified start time.
If you do not specify startTime,
Realtime Compute for Apache
Flink starts to consume data
from the earliest offset in each
shard.

Important
Only Blink 3.6.5 and later
support this parameter.
The preceding configurations
take effect only when no
checkpoint exists in the state
data.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 91

Note
In Realtime Compute for Apache Flink V1.6.0 and earlier, the read performance
may be affected if the number of shards in a consumer group is specified. This
issue is being rectified.
Log Service does not support the MAP data type.
Log Service sets the fields that do not exist to null.
We recommend that you define the fields in the same order as the fields in the
source table. Unordered fields are also supported.
If input data is in the JSON format, define a separator and use the built-in function
JSON_VALUE to analyze the data. Otherwise, the following parsing error is returned:

2017-12-25 15:24:43,467 WARN [Topology-0 (1/1)]
com.alibaba.blink.streaming.connectors.common.source.parse.DefaultSourceCollector
- Field missing error, table column number: 3, data column number: 3, data fi
led number: 1, data:
[{"lg_order_code":"LP00000005","activity_code":"TEST_CODE1","occur_time":"2017-
12-10 00:00:01"}]

The value of the batchGetSize parameter cannot exceed 1000. Otherwise, an
error is returned.
The batchGetSize parameter specifies the number of log items that are read at a
time in a log group. If the value of the batchGetSize parameter and the size of a
single log item that is specified in LogItem are large, frequent garbage collections
(GCs) may occur. In this case, you must reduce the value of the batchGetSize
parameter.

Data type mappings
The following table describes the mapping between the data types of Log Service and
Realtime Compute for Apache Flink. We recommend that you declare the mappings in a DDL
statement.

Data type of Log Service Data type of Realtime Compute for Apache
Flink

STRING VARCHAR

Attribute fields
By default, Flink SQL supports retrieving three types of Log Service attribute fields. Custom
fields are also supported as the input. For more information about how to use the attribute
fields, see Obtain attribute fields of a source table.

Field Description

 __source__ The message source.

 __topic__ The message topic.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

92 > Document Version: 20231114

 __timestamp__ The time when a log was generated.

Sample code
create table sls_input(
 a int,
 b int,
 c varchar
) with (
 type ='sls',
 endPoint ='http://cn-hangzhou-share.log.aliyuncs.com',
 accessId ='<yourAccessI>',
 accessKey ='<yourAccessKey>',
 startTime = '2017-07-05 00:00:00',
 project ='ali-cloud-streamtest',
 logStore ='stream-test',
 consumerGroup ='consumerGroupTest1'
);

create table print_output(
 a int,
 b int,
 c varchar
) with (
 type='print'
);

INSERT INTO print_output
SELECT
 a, b, c
from sls_input;

FAQ
Q: Why does the overall latency of a job increase, or why is no output generated for the job
that has window aggregation?
A: This issue occurs if no new data is written to a partition. To solve this issue, change the
parallelism to be the same as the number of read and write partitions.
Q: How do I set the parallelism?
A: We recommend that you set the parallelism to the number of partitions. Otherwise, if the
speeds at which data is read from two partitions vary significantly, data may be filtered out
or data latency may occur when you set the start offset for a job to a time prior to the
present time.
Q: How do I troubleshoot the issue that the latency of a Flink job increases?
A: The Log Service source table may be sharded. Shard indexes may not be continuous
after sharding, which increases the latency of a Flink job. If you find that the latency of a
Flink job increases, check whether the Log Service source table is sharded.
Q: How do I obtain attribute fields?
A: For more information about how to obtain attribute fields, see Obtain attribute fields of a
source table.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 93

Note
Attribute fields cannot be extracted during local debugging. We recommend that you
perform online debugging and view the attribute fields in logs. For more information,
see Online debugging.

References
For more information about Log Service, see What is Simple Log Service?.
For more information about how to consume Log Service data in Realtime Compute for
Apache Flink, see Use Realtime Compute to consume log data.

This topic describes how to create a ApsaraMQ for RocketMQ source table in Realtime
Compute for Apache Flink. This topic also describes the comma-separated values (CSV) file
format, parameters in the WITH clause, and data type mappings used when you create a
ApsaraMQ for RocketMQ source table.

Note
If you need to use ApsaraMQ for RocketMQ that has separate namespaces, use Blink 3.X.

Introduction to ApsaraMQ for RocketMQ
ApsaraMQ for RocketMQ is a professional messaging middleware that is developed by Alibaba
Cloud. It is a core service of the enterprise-level Internet architecture. You can specify
ApsaraMQ for RocketMQ tables as source tables for Realtime Compute for Apache Flink to
process streaming data.

Example
create table mq_stream(
 x varchar,
 y varchar,
 z varchar
) with (
 type='mq',
 topic='<yourTopicName>',
 endpoint='<yourEndpoint>',
 pullIntervalMs='1000',
 accessId='<yourAccessId>',
 accessKey='<yourAccessSecret>',
 startMessageOffset='1000',
 consumerGroup='<yourConsumerGroup>',
 fieldDelimiter='|'
);

5.6.2.5. Create a source table

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

94 > Document Version: 20231114

https://www.alibabacloud.com/help/en/sls/product-overview/what-is-log-service
https://www.alibabacloud.com/help/en/sls/user-guide/use-realtime-compute-to-consume-log-data

Note
ApsaraMQ for RocketMQ stores unstructured data. You do not need to define schemas for
ApsaraMQ for RocketMQ source tables. Instead, schemas are specified at the business
layer. Realtime Compute for Apache Flink supports messages in the CSV and binary
formats.

CSV format
The following example shows a ApsaraMQ for RocketMQ message in the CSV format.

1,name,male
2,name,female

Note
The number of data records that can be contained in a ApsaraMQ for RocketMQ message
is not limited. Multiple data records are separated by \n .

To declare a ApsaraMQ for RocketMQ source table in a Realtime Compute for Apache Flink
job, you can use the following DDL statement:

create table mq_stream(
 id varchar,
 name varchar,
 gender varchar
) with (
 type='mq',
 topic='<yourTopicName>',
 endpoint='<ourEndpoint>',
 pullIntervalMs='1000',
 accessId='<yourAccessId>',
 accessKey='<yourAccessSecret>',
 startMessageOffset='1000',
 consumerGroup='<yourConsumerGroup>',
 fieldDelimiter='|'
);

Binary format
For messages in the binary format, you can use the following sample code to create a
ApsaraMQ for RocketMQ source table:

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 95

create table source_table (
 mess varbinary
) with (
 type = 'mq',
 endpoint = '<yourEndpoint>',
 pullIntervalMs='500',
 accessId='<yourAccessId>',
 accessKey='<yourAccessSecret>',
 topic = '<yourTopicName>',
 consumerGroup='<yourConsumerGroup>'
);

create table out_table (
 commodity varchar
) with (
 type='print'
);

INSERT INTO out_table
SELECT
 cast(mess as varchar)
FROM source_table;

Note
The cast (mess as varbinary) method is supported only in Realtime Compute for
Apache Flink that uses Blink 2.0 or later. If the Blink version is earlier than 2.0,
upgrade the Blink version first.
Data of the VARBINARY type can be passed in only once.

Parameters in the WITH clause

Paramet
er Description Require

d Remarks

type The type of the source
table. Yes Set the value to mq.

topic The name of a topic. Yes N/A.

Two types of ApsaraMQ for RocketMQ services
are provided: internal ApsaraMQ for RocketMQ
and public ApsaraMQ for RocketMQ. Select an
endpoint based on the type of ApsaraMQ for
RocketMQ that you purchase.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

96 > Document Version: 20231114

endPoint
The endpoint of
ApsaraMQ for
RocketMQ.

Yes

For jobs that run on Blink 3.7.10 or later, use
Transmission Control Protocol (TCP) endpoints.
For more information, see Announcement on
the settings of internal TCP endpoints. You can
use one of the following methods to obtain the
endpoints:

Internal endpoints of ApsaraMQ for
RocketMQ that resides in the Alibaba Cloud
classic network or a virtual private cloud
(VPC): Log on to the ApsaraMQ for RocketMQ
console. In the left-side navigation pane,
click Instances. On the page that appears,
find the instance whose endpoint you want
to obtain, and click Details in the Actions
column. On the Instance Details page, click
the Endpoints tab. In the TCP Endpoint
section, you can view the endpoint that
corresponds to Internal Access.
Public endpoint of ApsaraMQ for RocketMQ:
Log on to the ApsaraMQ for RocketMQ
console. In the left-side navigation pane,
click Instances. On the page that appears,
find the instance whose endpoint you want
to obtain, and click Details in the Actions
column. On the Instance Details page, click
the Endpoints tab. In the TCP Endpoint
section, you can view the endpoint that
corresponds to Internet Access.

For jobs that run on Blink of a version earlier
than 3.7.10, use the following endpoints:

Internal endpoints of ApsaraMQ for
RocketMQthat resides in the Alibaba Cloud
classic network or a VPC:

China (Hangzhou), China (Shanghai),
China (Qingdao), China (Beijing), China
(Shenzhen), and China (Hong Kong):
 onsaddr-internal.aliyun.com:8080 .

Singapore (Singapore): ap-
southeastaddr-
internal.aliyun.com:8080 .

UAE (Dubai): ons-me-east-1-
internal.aliyuncs.com:8080 .

India (Mumbai): ons-ap-south-1-
internal.aliyuncs.com:8080 .

Malaysia (Kuala Lumpur): ons-ap-
southeast-3-
internal.aliyun.com:8080 .

Public endpoint of ApsaraMQ for RocketMQ:
 onsaddr-internet.aliyun.com:80 .

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 97

https://www.alibabacloud.com/help/en/apsaramq-for-rocketmq/product-overview/announcement-on-the-settings-of-internal-tcp-endpoints

Note
If you use a ApsaraMQ for RocketMQ
connector in Blink of a version earlier
than 3.7.10, you must update the
Blink version of your Realtime
Compute for Apache Flink job to Blink
3.7.10 or later and change the value
of the endpoint parameter to the new
endpoint of ApsaraMQ for RocketMQ.
This reduces the risks of instability or
unavailability that are caused by the
old endpoint of ApsaraMQ for
RocketMQ. For more information, see
Service notices of Realtime Compute
for Apache Flink.
Internal ApsaraMQ for RocketMQ
does not support cross-region
access. For example, if your Realtime
Compute for Apache Flink service is
located in the China (Hangzhou)
region but your ApsaraMQ for
RocketMQ service is located in the
China (Shanghai) region, Realtime
Compute for Apache Flink cannot
access ApsaraMQ for RocketMQ.
The network security policies of
Alibaba Cloud dynamically change. As
a result, connection issues may occur
when Realtime Compute for Apache
Flink connects to the public ApsaraMQ
for RocketMQ service. We
recommend that you use the internal
ApsaraMQ for RocketMQ service.

accessId AccessKey ID Yes N/A.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

98 > Document Version: 20231114

https://www.alibabacloud.com/help/en/flink/product-overview/service-notices

accessKe
y AccessKey Secret Yes N/A.

consume
rGroup

The name of a
consumer group. Yes N/A.

pullInterv
alMs

The interval at which
messages are pulled. No Unit: milliseconds.

startTime
The time when
Realtime Compute for
Apache Flink starts to
consume messages.

No N/A.

startMess
ageOffse
t

The start offset to
consume messages. No

This parameter is optional. If you configure this
parameter, messages are consumed from the
point of time that is specified by this parameter.

tag The subscription tag. No N/A.

lineDelim
iter

A row delimiter that is
used to parse message
blocks.

No Default value: \n .

fieldDeli
miter A field delimiter. No

Default value: \u0001 . \u0001 is the field
delimiter in read-only mode, and ^A is the
field delimiter in edit mode. \u0001 is invisible
in read-only mode.

encoding The encoding format. No Default value: utf-8 .

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 99

lengthCh
eck

The policy that is used
to check the number of
fields parsed from a
row of data.

No

Default value: NONE.
If the number of fields that are parsed from a
row of data is greater than the specified
number of fields, data is extracted from left to
right based on the order of specified fields.
If the number of fields that are parsed from a
row of data is less than the specified number of
fields, this row of data is skipped.

Other valid values are SKIP, EXCEPTION, and PAD.
SKIP: If the number of fields that are parsed
from a row of data is different from the
specified number of fields, this row of data is
skipped.
EXCEPTION: If the number of fields that are
parsed from a row of data is different from the
specified number of fields, an exception is
reported.
PAD: Data is padded from left to right based on
the order of specified fields.

If the number of fields that are parsed from a
row of data is greater than the specified
number of fields, data is extracted from left
to right based on the order of specified
fields.
If the number of fields that are parsed from a
row of data is less than the specified number
of fields, the values of the missing fields are
padded with null.

columnEr
rorDebug

Specifies whether to
enable debugging. No

Default value: FALSE. If you configure this
parameter to TRUE, a log entry is displayed when
a parsing exception occurs.

instanceI
D

The ID of a ApsaraMQ
for RocketMQ instance. No

If the ApsaraMQ for RocketMQ instance does not
have separate namespaces, you do not need to
configure this parameter. If the ApsaraMQ for
RocketMQ instance has separate namespaces,
you must configure this parameter.

Data type mapping

Data type of ApsaraMQ for RocketMQ Data type of Realtime Compute for Apache
Flink

STRING VARCHAR

5.6.2.6. Create a Message Queue for Apache Kafka
source table

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

100 > Document Version: 20231114

This topic describes how to create a Message Queue for Apache Kafka source table in
Realtime Compute for Apache Flink. It also describes the mappings between the values of the
type parameter and Kafka versions, and provides examples on how to parse messages of
Message Queue for Apache Kafka.

Important
This topic applies only to Blink 2.0 and later.
This topic applies only to Realtime Compute for Apache Flink that is deployed in
exclusive mode.
You can use Realtime Compute for Apache Flink to read data from a source table of
a self-managed Kafka cluster. Before data is read, you must take note of the
mappings between the values of the type parameter and Kafka versions, and the
network configurations of the self-managed Kafka cluster and your Realtime
Compute for Apache Flink cluster.
You cannot perform local debugging on binary data. If the binary data passes the
syntax check, you can perform online debugging on the binary data. For more
information, see Online debugging.

Introduction to Message Queue for Apache Kafka source tables
Message Queue for Apache Kafka is a distributed, high-throughput, and scalable message
queue service provided by Alibaba Cloud. Message Queue for Apache Kafka is widely used in
big data scenarios, such as log collection, monitoring data aggregation, streaming data
processing, and online and offline analysis. Realtime Compute for Apache Flink can use
Message Queue for Apache Kafka tables as source tables or result tables to process
streaming data.
The output data of Message Queue for Apache Kafka is of the serialized VARBINARY type. For
each data record obtained from a Message Queue for Apache Kafka source table, you must
write a user-defined table-valued function (UDTF) to parse the data into a data structure
before serialization. Realtime Compute for Apache Flink first extracts data from a Message
Queue for Apache Kafka source table, writes a UDTF to parse the data, and then exports the
result data to a sink. Flink SQL also allows you to use the CAST function to parse data of the
VARBINARY type into data of the VARCHAR type. For more information about UDTFs, see
UDTF.

DDL syntax
The DDL definition of a Message Queue for Apache Kafka source table must be the same as
the DDL definition in the following SQL statement. You can modify the settings of the
parameters in the WITH clause.

create table kafka_stream(--The sequence and data types of the following fields must
be the same as the five fields in the Message Queue for Apache Kafka source table.
 messageKey VARBINARY,
 `message` VARBINARY,
 topic VARCHAR,
 `partition` INT,
 `offset` BIGINT
) with (
 type ='kafka010',
 topic = '<yourTopicName>',
 `group.id` = '<yourGroupId>',
 ...
);

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 101

Parameters in the WITH clause
General configurations

Paramet
er

Descripti
on Required Remarks

type The Kafka
version. Yes

Valid values: Kafka08, Kafka09, Kafka010, and
Kafka011. For more information about the
mappings between the values of the type
parameter and Kafka versions, see Mappings
between the values of the type parameter and
Kafka versions.

topic
The name
of the
topic to
read.

Yes N/A.

topicPatte
rn

The
regular
expressio
n used to
read
multiple
topics.

No
Topics are separated by vertical bars (|), such as
 topic1|topic2|topic3 . For more information,

see Class Pattern.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

102 > Document Version: 20231114

https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

startupMo
de

The start
offset for
reading
data.

No

Note
We
recommend
that you set
this
parameter
based on
your
business
requirement
s.

Valid values:
GROUP_OFFSETS: reads data by group. This is
the default value.
EARLIEST: reads data from the earliest offset in
the Kafka cluster.
LATEST: reads data from the latest offset in the
Kafka cluster.
TIMESTAMP: reads data from a specific point in
time.
You can specify the startTimeMs or startTime
parameter in the WITH clause. The value of the
startTimeMs parameter is a timestamp, whereas
the value of the startTime parameter is in the
 yyyy-MM-dd HH:mm:ss format. We

recommend that you use the startTimeMs
parameter. If neither of the parameters is
specified, data is consumed from the start offset
specified by Realtime Compute for Apache Flink.

Note
If you do not specify this parameter in
plaintext, GROUP_OFFSETS is used by
default.
If you set this parameter to TIMESTAMP,
you must specify the time zone in job
parameters in plaintext, such as
 blink.job.timeZone=Asia/Shanghai
 .

In GROUP_OFFSETS mode, if no offset is
configured, data is read from the end of
the Kafka partition when a group
consumes Kafka data for the first time.
Only Kafka010 and Kafka011 support
the TIMESTAMP data type.

partitionD
iscoveryIn
tervalMS

The
interval
at which
new
partitions
are
checked.

No

Kafka08: By default, new partitions are checked
at a specific interval.
Kafka09 or later: The
partitionDiscoveryIntervalMS parameter is
not supported. You can specify
extraConfig='flink.partition-
discovery.interval-millis=60000' in the WITH
clause to achieve the same effect as the
partitionDiscoveryIntervalMS parameter.

Default value: 60000. Unit: milliseconds.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 103

extraConf
ig

Additional
KafkaCon
sumer
configurat
ion items. No

You can use this parameter to add configuration
items that are required in special scenarios but are
not included in the optional configuration items.
Example:
 'fetch.message.max.bytes=104857600' .

Separate multiple configuration items with
semicolons (;).

Configurations for Kafka08
Required configurations

Parameter Description Required

group.id The ID of the consumer group. Yes

zookeeper.connect The ZooKeeper URL. Yes

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

104 > Document Version: 20231114

Optional configurations
consumer.id
socket.timeout.ms
fetch.message.max.bytes
num.consumer.fetchers
auto.commit.enable
auto.commit.interval.ms
queued.max.message.chunks
rebalance.max.retries
fetch.min.bytes
fetch.wait.max.ms
rebalance.backoff.ms
refresh.leader.backoff.ms
auto.offset.reset
consumer.timeout.ms
exclude.internal.topics
partition.assignment.strategy
client.id
zookeeper.session.timeout.ms
zookeeper.connection.timeout.ms
zookeeper.sync.time.ms
offsets.storage
offsets.channel.backoff.ms
offsets.channel.socket.timeout.ms
offsets.commit.max.retries
dual.commit.enabled
partition.assignment.strategy
socket.receive.buffer.bytes
fetch.min.bytes

Configurations for Kafka09, Kafka010, and Kafka011
Required configurations

Parameter Description

group.id The ID of the consumer group.

bootstrap.servers The endpoint of the Message Queue for Apache
Kafka cluster.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 105

For more information about the optional configurations for Kafka09, Kafka010, and
Kafka011, see the following Kafka documentation:

Kafka09
Kafka010
Kafka011

If you want to modify the configurations, you can add parameters to the WITH clause in
the DDL statement. For example, if you want to configure Simple Authentication and
Security Layer (SASL), add the security.protocol , sasl.mechanism , and
 sasl.jaas.config parameters.

create table kafka_stream(
 messageKey varbinary,
 `message` varbinary,
 topic varchar,
 `partition` int,
 `offset` bigint
) with (
 type ='kafka010',
 topic = '<yourTopicName>',
 `group.id` = '<yourGroupId>',
 ...,
 `security.protocol`='SASL_PLAINTEXT',
 `sasl.mechanism`='PLAIN',
 `sasl.jaas.config`='org.apache.kafka.common.security.plain.PlainLoginModule requi
red username="<yourUserName>" password="<yourPassword>";'
);

Mappings between the values of the type parameter and Kafka
versions

type Kafka version

Kafka08 0.8.22

Kafka09 0.9.0.1

Kafka010 0.10.2.1

Kafka011 0.11.0.2 and later

Examples on how to parse messages of Message Queue for
Apache Kafka

Scenario 1: Realtime Compute for Apache Flink processes the data read from Message
Queue for Apache Kafka and exports the result data to ApsaraDB RDS.
Data stored in Message Queue for Apache Kafka is in the JSON format and must be
processed by using Realtime Compute for Apache Flink. The following code shows the
message format:

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

106 > Document Version: 20231114

https://kafka.apache.org/090/documentation.html?spm=a2c4g.11186623.2.18.5fda779biQ4ToG#newconsumerconfigs
https://kafka.apache.org/0100/documentation.html?spm=a2c4g.11186623.2.18.5fda779biQ4ToG#newconsumerconfigs
https://kafka.apache.org/0110/documentation.html?spm=a2c4g.11186623.2.17.5fda779biQ4ToG#consumerconfigs

{
 "name":"Alice",
 "age":13,
 "grade":"A"
}

Data processing method 1: Realtime Compute for Apache Flink reads and processes data
from the Message Queue for Apache Kafka source table and then exports the result data
to ApsaraDB RDS.
In Blink 2.2.7 and later, you can use the CAST function to convert the VARBINARY data
type into the VARCHAR data type. Then, use the JSON_VALUE function to parse the data
of the Message Queue for Apache Kafka source table. The following code shows an
example:

CREATE TABLE kafka_src (
 messageKey VARBINARY,
 `message` VARBINARY,
 topic VARCHAR,
 `partition` INT,
 `offset` BIGINT
) WITH (
 type = 'kafka010', -- For more information, see Mappings between the values of th
e type parameter and Kafka versions.
);

CREATE TABLE rds_sink (
 `name` VARCHAR,
 age VARCHAR,
 grade VARCHAR
) WITH(
 type='rds'
);

CREATE VIEW input_view AS
 SELECT CAST(`message` as VARCHAR) as `message`
FROM kafka_src;

INSERT INTO rds_sink
SELECT
 JSON_VALUE(`message`,'$.name'),
 JSON_VALUE(`message`,'$.age'),
 JSON_VALUE(`message`,'$.grade')
FROM input_view;

Data processing method 2: Realtime Compute for Apache Flink extracts data from the
Message Queue for Apache Kafka source table, writes a UDTF to parse the data, and then
exports the result data to ApsaraDB RDS.
To parse irregular data or complex JSON data, you must write UDTF code. Examples:

SQL

-- Define a UDTF to parse messages of Message Queue for Apache Kafka.
CREATE FUNCTION kafkaparser AS 'com.alibaba.kafkaUDTF';

-- Define a Message Queue for Apache Kafka source table. Note that the fields dec

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 107

lared in the DDL statement of the Message Queue for Apache Kafka source table mus
t be the same as the fields in the following example. You can modify the
settings of the parameters in the WITH clause.
CREATE TABLE kafka_src (
 messageKey VARBINARY,
 `message` VARBINARY,
 topic VARCHAR,
 `partition` INT,
 `offset` BIGINT
) WITH (
 type = 'kafka010', -- For more information, see Mappings between the values of
the type parameter and Kafka versions.
 topic = 'test_kafka_topic',
 `group.id` = 'test_kafka_consumer_group',
 bootstrap.servers = 'ip1:port1,ip2:port2,ip3:port3'
);

CREATE TABLE rds_sink (
 name VARCHAR,
 age INT,
 grade VARCHAR,
 updateTime TIMESTAMP
) WITH(
 type='rds',
 url='jdbc:mysql://localhost:3306/test',
 tableName='test4',
 userName='test',
 password='<yourDatabasePassword>'
);

-- Use a UDTF to parse data of the VARBINARY type into formatted data.
CREATE VIEW input_view (
 name,
 age,
 grade,
 updateTime
) AS
SELECT
 T.name,
 T.age,
 T.grade,
 T.updateTime
FROM
 kafka_src as S,
 LATERAL TABLE (kafkaparser (`message`)) as T (
 name,
 age,
 grade,
 updateTime
);

-- Compute the formatted data and export the result data to ApsaraDB RDS.
INSERT INTO rds_sink
SELECT
 name,

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

108 > Document Version: 20231114

 name,
 age,
 grade,
 updateTime
FROM input_view;

UDTF
For more information about how to create a UDTF, see UDTF. The following example
shows Maven dependencies of Blink 2.2.4.

 <dependencies>
 <dependency>
 <groupId>org.apache.flink</groupId>
 <artifactId>flink-core</artifactId>
 <version>blink-2.2.4-SNAPSHOT</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.apache.flink</groupId>
 <artifactId>flink-streaming-java_2.11</artifactId>
 <version>blink-2.2.4-SNAPSHOT</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.apache.flink</groupId>
 <artifactId>flink-table_2.11</artifactId>
 <version>blink-2.2.4-SNAPSHOT</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>com.alibaba</groupId>
 <artifactId>fastjson</artifactId>
 <version>1.2.9</version>
 </dependency>
 </dependencies>

package com.alibaba;

import com.alibaba.fastjson.JSONObject;
import org.apache.flink.table.functions.TableFunction;
import org.apache.flink.table.types.DataType;
import org.apache.flink.table.types.DataTypes;
import org.apache.flink.types.Row;
import java.io.UnsupportedEncodingException;
import java.sql.Timestamp;

public class kafkaUDTF extends TableFunction<Row> {
 public void eval(byte[] message) {
 try {
 /* input message :
 {
 "name":"Alice",
 "age":13,
 "grade":"A",
 "updateTime":1544173862

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 109

 "updateTime":1544173862
 }
 */
 String msg = new String(message, "UTF-8");
 try {
 JSONObject data = JSON.parseObject(msg);
 if (data != null) {
 String name = data.getString("name") == null ? "null" : data.g
etString("name");
 Integer age = data.getInteger("age") == null ? 0 : data.getInt
eger("age");
 String grade = data.getString("grade") == null ? "null" : data
.getString("grade");
 Timestamp updateTime = data.getTimestamp("updateTime");

 Row row = new Row(4);
 row.setField(0, name);
 row.setField(1, age);
 row.setField(2, grade);
 row.setField(3,updateTime);

 System.out.println("Kafka message str ==>" + row.toString());
 collect(row);
 }
 } catch (ClassCastException e) {
 System.out.println("Input data format error. Input data " + msg +
"is not json string");
 }
 } catch (UnsupportedEncodingException e) {
 e.printStackTrace();
 }
 }
 @Override
 // If the return value is declared as a row, you must reload the UDTF method
and specify the types of fields to be returned.
 public DataType getResultType(Object[] arguments, Class[] argTypes) {
 return DataTypes.createRowType(DataTypes.STRING, DataTypes.INT,
DataTypes.STRING, DataTypes.TIMESTAMP);
 }
}

Scenario 2: Realtime Compute for Apache Flink reads data from a Message Queue for
Apache Kafka source table and processes the data by using window functions.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

110 > Document Version: 20231114

You must define watermarks in the DDL statement of a source table for windows, such as
tumbling and sliding windows, based on the design of Realtime Compute for Apache Flink.
For more information, see Watermark. The method you use to define a watermark in a
Message Queue for Apache Kafka source table is different from the method you use for
other types of source tables. If you want to perform an event time-based computation by
using a window function, you must use a user-defined extension (UDX) to parse the event
time in the message field of a source table. Then, you can define a watermark based on the
parsed event time. You must use a computed column to convert data types for the event
time parsed from a Message Queue for Apache Kafka source table. For example, the data
 2018-11-11 00:00:00|1|Anna|female is written to the Message Queue for Apache Kafka
source table. During the computing process, Realtime Compute for Apache Flink extracts
data from the Message Queue for Apache Kafka source table, writes a UDTF to parse the
data, and then exports the result data to ApsaraDB RDS.

Data processing method 1: Realtime Compute for Apache Flink reads and processes data
from the Message Queue for Apache Kafka source table and then exports the result data
to ApsaraDB RDS.
In Blink 2.2.7 and later, you can use the CAST function to convert the VARBINARY data
type into the VARCHAR data type. Then, use the JSON_VALUE function to parse the data
of the Message Queue for Apache Kafka source table. The following code shows an
example:

CREATE TABLE kafka_src (
 messageKey VARBINARY,
 `message` VARBINARY,
 topic VARCHAR,
 `partition` INT,
 `offset` BIGINT,
 ts as to_timestamp(json_value(cast(`message` as VARCHAR),'$.nodes.time')),
 WATERMARK wk FOR ts as withOffset(ts, 2000)
) WITH (type = 'kafka' -- For more information, see Mappings between the values of
the type parameter and Kafka versions.
);

CREATE TABLE rds_sink (
 starttime TIMESTAMP ,
 endtime TIMESTAMP ,
 `message` BIGINT
) WITH (type = 'rds');

INSERT
 INTO rds_sink
SELECT
 TUMBLE_START(ts, INTERVAL '1' MINUTE),
 TUMBLE_END(ts, INTERVAL '1' MINUTE),
 count(`message`)
FROM
 kafka_src
GROUP BY TUMBLE(ts, INTERVAL '1' MINUTE);

Data processing method 2: Realtime Compute for Apache Flink extracts data from the
Message Queue for Apache Kafka source table, writes a UDTF to parse the data, and then
exports the result data to ApsaraDB RDS.

SQL

-- Define a UDTF to parse messages of Message Queue for Apache Kafka.
CREATE FUNCTION kafkapaser AS 'com.alibaba.kafkaUDTF';

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 111

CREATE FUNCTION kafkapaser AS 'com.alibaba.kafkaUDTF';
CREATE FUNCTION kafkaUDF AS 'com.alibaba.kafkaUDF';

-- Define a Message Queue for Apache Kafka source table. Note that the fields def
ined in the DDL statement must be the same as the fields in the following stateme
nt. You can modify the settings of the parameters in the WITH clause.
create table kafka_src (
 messageKey VARBINARY,
 `message` VARBINARY,
 topic VARCHAR,
 `partition` INT,
 `offset` BIGINT,
 ctime AS TO_TIMESTAMP(kafkaUDF(`message`)), -- Define a computed column. A comp
uted column can be considered as a placeholder column that is not stored in a sou
rce table. The values in this column are computed. If you want to define a waterm
ark, the data type of the computed column must be TIMESTAMP.
 watermark for `ctime` as withoffset(`ctime`,0) -- Define a watermark in a compu
ted column.
) WITH (
 type = 'kafka010', -- For more information, see Mappings between the values of
the type parameter and Kafka versions.
 topic = 'test_kafka_topic',
 `group.id` = 'test_kafka_consumer_group',
 bootstrap.servers = 'ip1:port1,ip2:port2,ip3:port3'
);

create table rds_sink (
 `name` VARCHAR,
 age INT,
 grade VARCHAR,
 updateTime TIMESTAMP
) WITH(
 type='rds',
 url='jdbc:mysql://localhost:3306/test',
 tableName='test4',
 userName='test',
 password='<yourPassword>'
);

-- Use a UDTF to parse data of the VARBINARY type to formatted data.
CREATE VIEW input_view AS
SELECT
 S.ctime,
 T.`order`,
 T.`name`,
 T.sex
 from
 kafka_src as S,
 LATERAL TABLE (kafkapaser (`message`)) as T (
 ctime,
 `order`,
 `name`,
 sex
);

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

112 > Document Version: 20231114

);

-- Compute the data in input_view.
CREATE VIEW view2 (
 cnt,
 sex
) AS
 SELECT
 COUNT(*) as cnt,
 T.sex
 from
 input_view
Group BY sex, TUMBLE(ctime, INTERVAL '1' MINUTE);

-- Compute the formatted data and export the result data to ApsaraDB RDS.
insert into rds_sink
 SELECT
 cnt,sex
from view2;

UDF&UDTF
For more information about how to create UDFs and UDTFs, see UDF and UDTF. The
following example shows Maven dependencies of Blink 2.2.4.

 <dependencies>
 <dependency>
 <groupId>org.apache.flink</groupId>
 <artifactId>flink-core</artifactId>
 <version>blink-2.2.4-SNAPSHOT</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.apache.flink</groupId>
 <artifactId>flink-streaming-java_2.11</artifactId>
 <version>blink-2.2.4-SNAPSHOT</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.apache.flink</groupId>
 <artifactId>flink-table_2.11</artifactId>
 <version>blink-2.2.4-SNAPSHOT</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>com.alibaba</groupId>
 <artifactId>fastjson</artifactId>
 <version>1.2.9</version>
 </dependency>
 </dependencies>

UDTF

package com.alibaba;

import com.alibaba.fastjson.JSONObject;
import org.apache.flink.table.functions.TableFunction;

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 113

import org.apache.flink.table.functions.TableFunction;
import org.apache.flink.table.types.DataType;
import org.apache.flink.table.types.DataTypes;
import org.apache.flink.types.Row;
import java.io.UnsupportedEncodingException;

/**
 The following example shows how to parse the JSON strings in a Message Queue
for Apache Kafka source table and format the parsed data.
**/
public class kafkaUDTF extends TableFunction<Row> {

 public void eval(byte[] message) {
 try {
 // Read data of the VARBINARY data type and convert the data into the
STRING data type.
 String msg = new String(message, "UTF-8");

 // Extract data from JSON strings based on the following fields:

 String ctime = Timestamp.valueOf(data.split('\\|')[0]);
 String order = data.split('\\|')[1];
 String name = data.split('\\|')[2];
 String sex = data.split('\\|')[3];

 // Return rows of data based on the parsed fields.
 Row row = new Row(4);
 row.setField(0, ctime);
 row.setField(1, age);
 row.setField(2, grade);
 row.setField(3, updateTime);

 System.out.println("Kafka message str ==>" + row.toString())
;

 // Return a row of data.
 collect(row);

 } catch (ClassCastException e) {
 System.out.println("Input data format error. Input data " + msg
+ "is not json string");
 }

 } catch (UnsupportedEncodingException e) {
 e.printStackTrace();
 }

 }

 @Override
 // If the return value is declared as a row, you must reload the UDTF metho
d and specify the types of fields to be returned.
 // Define the data types for objects in output rows.
 public DataType getResultType(Object[] arguments, Class[] argTypes) {

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

114 > Document Version: 20231114

 public DataType getResultType(Object[] arguments, Class[] argTypes) {
 return DataTypes.createRowType(DataTypes.TIMESTAMP,DataTypes.STRING, Da
taTypes.Integer, DataTypes.STRING,DataTypes.STRING);
 }

}

UDF

package com.alibaba;
package com.hjc.test.blink.sql.udx;
import org.apache.flink.table.functions.FunctionContext;
import org.apache.flink.table.functions.ScalarFunction;

public class KafkaUDF extends ScalarFunction {
 // The open method is optional.
 // To implement the open method, you must add "import
org.apache.flink.table.functions.FunctionContext;" to the code.

 public String eval(byte[] message) {

 // Read data of the VARBINARY data type and convert it into the STRING
data type.
 String msg = new String(message, "UTF-8");
 return msg.split('\\|')[0];
 }
 public long eval(String b, String c) {
 return eval(b) + eval(c);
 }
 // The close method is optional.
 @Override
 public void close() {
 }
}

Create a source table of a self-managed Kafka database
Example

create table kafka_stream(
 messageKey VARBINARY,
 `message` VARBINARY,
 topic varchar,
 `partition` int,
 `offset` bigint
) with (
 type ='kafka011',
 topic = 'kafka_01',
 `group.id` = 'CID_blink',
 bootstrap.servers = '192.168.0.251:****'
);

Parameters in the WITH clause
For more information, see Parameters in the WITH clause.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 115

Note
bootstrap.servers specifies the address and port number of the self-managed
Kafka cluster.
Metrics, such as transactions per second (TPS) and requests per second (RPS) of
Message Queue for Apache Kafka or a self-managed Kafka database, can be
displayed only in the console of Realtime Compute for Apache Flink of Blink 2.2.6
and later.

FAQ
Q: What do I do if the following error occurs when a job is being started?

ERR_ID:
 SQL-00010007
CAUSE:
 Could not create table 'kafka_source' as source table
ACTION:
 Please refer to details section for hint.
 If it doesn't help, please contact customer support
DETAIL:
 java.lang.IllegalArgumentException: Startup time[1566481803000] must be before c
urrent time[1566453003356].

A: This error is caused by invalid time zone settings. To solve this issue, add the following
parameter to job parameters:

blink.job.timeZone=Asia/Shanghai

Q: What do I do if a self-managed Kafka cluster cannot consume data?
A:

Causes
Each broker of the Kafka cluster sends its metadata to ZooKeeper. Then, the Kafka
consumer accesses a broker to extract data by using the endpoint in
listener_security_protocol_map in the metadata of the broker. The endpoint is either the
IP address or the combination of the local server domain name and port number. If the
machine where your Realtime Compute for Apache Flink job resides cannot access the
endpoint, the consumer of the connector cannot extract data. As a result, the data
consumption process stops.
Troubleshooting

a. View the endpoint in listener_security_protocol_map of the broker of ZooKeeper.

b. Use the network detection feature to check whether you can access the IP address or
domain name in the endpoint.

c. Log on to your machine to confirm the cause.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

116 > Document Version: 20231114

Solution
If the endpoint is an IP address, check whether a whitelist for accessing storage resources
is configured for the Kafka server. If no whitelist is configured, configure a whitelist and
try again.
Exclusive clusters of Realtime Compute for Apache Flink cannot resolve domain names.
If the endpoint is a domain name and a whitelist has been configured, use one of the
following methods:

If you cannot restart the Kafka service, perform the following operations:
Purchase PrivateZone and configure domain name resolution for all Kafka brokers.
After network detection based on the domain name succeeds, restart your Realtime
Compute for Apache Flink job.
If you can restart the Kafka service, perform the following operations:
Configure the IP address and port number (in boostrap.servers in typical cases) for
advertised.listeners for the related broker. Make sure that the network connection
is normal. Then, restart your Realtime Compute for Apache Flink job.

Q: Why does a job terminate immediately after it is started during the consumption of
Kafka data?
A: For versions earlier than Blink 3.3.0, if the startupMode parameter is set to TIMESTAMP
and all the partitions of Kafka contain no data, the Kafka connector determines that no
partition data can be consumed and terminates the job. You can view log information
similar to Consumer subtask {} initially has no partitions from which to read. in the
 TaskManager.log log filethat corresponds to the job. We recommend that you upgrade
the Blink version to 3.3.0 or later.
Q: What are the features of the commit offset mechanism in Realtime Compute for Apache
Flink?
A: By default, Realtime Compute for Apache Flink uses commitOffsetOnCheckpointing.
The commit offset policy configured by users does not take effect. If you enable
checkpointing, Realtime Compute for Apache Flink commits the offset that is consumed
at the current time to Kafka each time a checkpoint is generated. This way, data is
consumed from the offset that is committed from the last checkpoint during job
restoration. This ensures exactly-once processing of streaming data. If the checkpoint
interval exceeds the specified upper limit, Kafka may fail to query the consumed offset.

This topic describes how to create a Tablestore source table in Realtime Compute for Apache
Flink.

Important This topic applies only to Realtime Compute for Apache Flink V3.2.2
and later.

Introduction to Tablestore
Tablestore is a distributed NoSQL database service that is built on the Apsara distributed
operating system of Alibaba Cloud. Tablestore adopts data sharding and load balancing
technologies to scale out and handle concurrent transactions. You can use Tablestore to store
and query a large amount of structured data in real time.

Tunnel Service of Tablestore
Tunnel Service is a centralized service that uses the Tablestore API to allow you to consume
full and incremental data. You can use the Tunnel Service API and SDKs to create tunnels
from which you can consume distributed data in real time. The distributed data is divided into

5.6.2.7. Create a Tablestore source table

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 117

the following types: incremental data, full data, and full and incremental data. You can use
the tunnels of the Tunnel Service to consume existing data or added data in tables in
streaming processing mode. In Realtime Compute for Apache Flink, the tunnels of the Tunnel
Service can serve as the source of streaming data. Each data record uses a JSON-like format.
You can run the following code if you need to use Tunnel Service tunnels:
{
 "OtsRecordType": "PUT", // The data operation type, such as PUT, UPDATE,
and DELETE.
 "OtsRecordTimestamp": 1506416585740836, // The time when the data is
written. The time unit is milliseconds. The value 0 indicates that full data is written
.
 "PrimaryKey": [
 {
 "ColumnName": "pk_1", // The first primary key column.
 "Value": 1506416585881590900
 },
 {
 "ColumnName": "pk_2", // The second primary key column.
 "Value": "string_pk_value"
 }
],
 "Columns": [
 {
 "OtsColumnType": "Put", // The operation type for the column, such a
s PUT, DELETE_ONE_VERSION, and DELETE_ALL_VERSION.
 "ColumnName": "attr_0",
 "Value": "hello_table_store",
 },
 {
 "OtsColumnType": "DELETE_ONE_VERSION", // No value is specified for
the delete operation.
 "ColumnName": "attr_1"
 }
]
}

DDL syntax
In Realtime Compute for Apache Flink, you can use Tablestore to store input data. The
following code shows an example:

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

118 > Document Version: 20231114

create table tablestore_stream(
 pk_1 BIGINT,
 pk_2 VARCHAR,
 attr_0 VARCHAR,
 attr_1 DOUBLE,
 OtsRecordType VARCHAR HEADER //You must add HEADER to the attribute field.
) with (
 type ='ots',
 endPoint ='http://blink-demo.cn-hangzhou.vpc.tablestore.aliyuncs.com',
 instanceName = 'blink-demo',
 tableName ='demo_table',
 tunnelName = 'blink-demo-stream',
 accessId ='<yourAccessID>',
 accessKey ='<yourAccessSecret>',
 ignoreDelete = 'false' // Specifies whether to ignore the delete operation.
);

Attribute fields
For more information about how to obtain and use attribute fields in a Tablestore source
table, see Obtain attribute fields of a source table.

Field Description

 OtsRecordType The data operation type.

 OtsRecordTimestamp The data operation time. If you set this parameter
to 0, full data is written.

 <Column name>_OtsColumnType The operation type for a column.

Parameters in the WITH clause
Parameter Description Remarks

type The type of the connector. Set the value to ots .

endPoint The endpoint of the Tablestore
instance.

Enter the VPC endpoint if the
instance is deployed in a VPC.

instanceName The name of the Tablestore
instance. None.

tableName The name of the Tablestore
table.

Realtime Compute for Apache
Flink does not reread data that
has been read from a
Tablestore source table. If you
want Realtime Compute for
Apache Flink to reread full data
from the source table, you must
create a data tunnel.

tunnelName The tunnel name of the
Tablestore source table. None.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 119

accessId The AccessKey ID that is used
to access Tablestore. None.

accessKey The AccessKey secret that is
used to access Tablestore. None.

ignoreDelete Specifies whether to ignore the
delete operation.

Optional. Default value:
 false .

This topic describes how to create a full MaxCompute source table in Realtime Compute for
Apache Flink. This topic also describes the parameters in the WITH clause and data type
mappings used when you create a full MaxCompute source table.

Important
This topic applies only to Blink 2.2.7 and later.
Full MaxCompute source tables are typically used as bounded stream tables. This
makes MaxCompute different from other data sources, such as DataHub and Kafka.
In Blink 3.4.4, you can specify a full MaxCompute source table as an unbounded
stream table. This way, the source table can continuously listen to new partitions.
If a new partition is generated, Realtime Compute for Apache Flink reads data from
the new partition. This feature is deprecated in Blink 3.5.0. To use a MaxCompute
source table as an unbounded stream table, create an incremental MaxCompute
source table. For more information, see Create an incremental MaxCompute source
table.

DDL syntax
In Realtime Compute for Apache Flink, you can use MaxCompute to store input data. The
following code shows an example:

create table odps_source(
 id INT,
 user_name VARCHAR,
 content VARCHAR
) with (
 type = 'odps',
 endPoint = 'http://service.cn.maxcompute.aliyun-inc.com/api',
 project = '<projectName>',
 tableName = '<tableName>',
 accessId = '<yourAccessKeyId>',
 accessKey = '<yourAccessKeySecret>',
 `partition` = 'ds=2018****' --If your MaxCompute source table is a non-partitioned ta
ble, you do not need to declare this parameter.
);

Parameters in the WITH clause

Parameter Description Requir
ed Remarks

5.6.2.8. Create a full MaxCompute source table

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

120 > Document Version: 20231114

endPoint The endpoint of
MaxCompute. Yes For more information, see Endpoints.

tunnelEndpoint
The endpoint of
MaxCompute
Tunnel.

No

For more information, see Endpoints.

Note
This parameter is required if
MaxCompute is deployed in a virtual
private cloud (VPC).

project
The name of the
MaxCompute
project.

Yes N/A.

tableName The name of the
MaxCompute table. Yes N/A.

accessId
The AccessKey ID
that is used to
access
MaxCompute.

Yes N/A.

accessKey
The AccessKey
secret that is used
to access
MaxCompute.

Yes N/A.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 121

https://www.alibabacloud.com/help/en/maxcompute/user-guide/endpoints
https://www.alibabacloud.com/help/en/maxcompute/user-guide/endpoints

partition The name of a
partition. No

A full MaxCompute table that has only
one-level partitions
For example, if only one partition key
column ds exists, `partition` =
'ds=20180905' indicates that data in
the ds=20180905 partition is read.

A full MaxCompute table that has multi-
level partitions
For example, if two partition key columns
 ds and hh exist,
 `partition`='ds=20180905,hh=*'

indicates that data in the
 ds=20180905 partition is read.

Note
When you filter partitions, you must
declare the values of all partitions.
In the preceding example, if you
declare only `partition` =
'ds=20180905' , no partition data
is read.

subscribeNewPartiti
on

Specifies whether
to listen to new
partitions that meet
specific conditions.

No

Default value: false. This value indicates
that the system does not listen to new
partitions.

Note
If the subscribeNewPartition
parameter is set to true ,
you cannot specify the value of
the partition parameter.
Otherwise, new partitions
cannot be read.
This parameter is provided only
in Blink 3.4.4. The parameter is
deprecated in Blink 3.5.0. If you
need to use this parameter,
create an incremental
MaxCompute source table. For
more information, see Create
an incremental MaxCompute
source table.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

122 > Document Version: 20231114

subscribeIntervalIn
Sec

The interval at
which new
partitions are
listened to.

No

Default value: 30. Unit: seconds.

Note
If the value of this parameter is too
small, pressure may be caused on the
MaxCompute metadata service. This
may result in failures to listen to the
service.

maxPartitionCount

The number of
partitions in the
partitioned table
that is read if the
partition parameter
is not specified.

No

Default value: 100.

Note
Only Blink 3.0 and later support this
parameter.

Data type mappings

Data type of MaxCompute Data type of Realtime Compute for Apache
Flink

TINYINT TINYINT

SMALLINT SMALLINT

INT INT

BIGINT BIGINT

FLOAT FLOAT

DOUBLE DOUBLE

BOOLEAN BOOLEAN

DATETIME TIMESTAMP

TIMESTAMP TIMESTAMP

VARCHAR VARCHAR

DECIMAL DECIMAL

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 123

BINARY VARBINARY

STRING VARCHAR

Sample code
The following sample code shows how to create a full MaxCompute source table in a Realtime
Compute for Apache Flink job.

CREATE TABLE odps_source (
 cid varchar,
 rt DOUBLE,
) with (
 type = 'odps',
 endPoint = '<yourEndpointName>',
 project = '<yourProjectName>',
 tableName = '<yourTableName>',
 accessId = '<yourAccessId>',
 accessKey = '<yourAccessPassword>',
 partition = 'ds=20190712'
);

CREATE TABLE test (
 cid varchar,
 invoke_count BIGINT
) with (
 type='print'
);

INSERT INTO test
SELECT
 cid,
 count(*) as invoke_count
FROM odps_source GROUP BY cid;

FAQ
Q: What do I do if the values of the endPoint and tunnelEndpont parameters in the DDL
statement are incorrect?
A: For more information about the endPoint and tunnelEndpont parameters, see Endpoints.
Incorrect configuration of parameters may lead to the following issues:

If the configuration of the endPoint parameter is incorrect, the task publish progress stops
at 91%.
If the tunnelEndpoint parameter is incorrectly configured, the task fails.

Q: How does the full MaxCompute data storage read data in a full MaxCompute source
table?
A: The full MaxCompute data storage reads data from the full MaxCompute source table by
using a tunnel. Therefore, the read speed and bandwidth are restricted by the bandwidth of
the tunnel used by the full MaxCompute source table.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

124 > Document Version: 20231114

https://www.alibabacloud.com/help/en/maxcompute/user-guide/endpoints

Q: If data of some partitions of a full MaxCompute source table has been read, can the full
MaxCompute data storage read data that is newly written to these partitions after a
Realtime Compute for Apache Flink job is started?
A: No, the full MaxCompute data storage cannot read the new data from the partitions. The
full MaxCompute data storage reads data from tables or partitions by using a tunnel. After
a Realtime Compute for Apache Flink job is started, MaxCompute Reader exits when data
reading is complete. Then, MaxCompute Reader does not read new data from the full
MaxCompute source table or partitions.
Q: How does the full MaxCompute data storage read data that is newly written to the full
MaxCompute source table or partitions after a Realtime Compute for Apache Flink job is
started?
A: Realtime Compute for Apache Flink V3.4 and later support the subscribeNewPartition
parameter that determines whether to listen to new partitions. New data can be written to
new partitions. The following code shows an example:

CREATE TABLE blink_source (
 cid varchar,
 rt DOUBLE,
) with (
 type = 'odps',
 endPoint = '<yourEndpointName>',
 project = '<yourProjectName>',
 tableName = '<yourTableName>',_table_name',
 subscribeNewPartition = 'true'
 -- You cannot specify the partition parameter if you want to listen to new partit
ions.
 accessId = '<yourAccessKeyId>',
 accessKey = '<yourAccessKeySecret>',
);

CREATE TABLE test (
 cid varchar,
 invoke_count BIGINT
) with (
 type='print'
);

INSERT INTO test
SELECT
 cid,
 count(*) as invoke_count
FROM blink_source GROUP BY cid;

Note
Data that is generated for new partitions in a full MaxCompute source table must be
written to the new partitions of the table in Realtime Compute for Apache Flink. The
data that is written to existing partitions is invalid.

Q: Can I use max_pt() or max_pt_with_done() in the value of the partition parameter
in the WITH clause?

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 125

A: We recommend that you do not use these parameters in the WITH clause. If you want to
use these parameters, make sure that you understand the usage of max_pt() in a full
MaxCompute source table in the following scenarios:

Listening to new partitions is not enabled.
After a task is started, MaxCompute Reader uses the full MaxCompute metadata service
to obtain all partitions in the current full MaxCompute source table and reads
 max_pt() . After data reading is complete, MaxCompute Reader exits and does not read
new data from the partition to which max_pt belongs or listen to new partitions.
Listening to new partitions is enabled.
After a task is started, MaxCompute Reader uses the full MaxCompute metadata service
to obtain all partitions in the current full MaxCompute source table and reads
 max_pt() . After data reading is complete, MaxCompute Reader does not read new data
from the partition to which max_pt() belongs. However, MaxCompute Reader listens to
the generation of new partitions at specific intervals. For more information, see
subscribeIntervalInSec. If new partitions are generated, MaxCompute Reader reads
the partitions and then reads max_pt() from the partitions. After data reading is
complete, the system waits for the next listening event. If no new partitions are
generated, the system waits for the next listening event.

Q: If a full MaxCompute source table is referenced as a data source, can the data that is
appended to an existing partition or table be read after a job is started?
A: No, the data cannot be read and the job may fail. The full MaxCompute data storage uses
 ODPS DOWNLOAD SESSION to read data from tables or partitions. When you create a
 DOWNLOAD SESSION , the MaxCompute server creates an index file, which contains the data
mapping obtained when the DOWNLOAD SESSION is created. Subsequent data reading is
performed based on the data mapping. Therefore, the data that is appended to the full
MaxCompute source table or partitions after the DOWNLOAD SESSION is created cannot be
read in normal cases. This issue occurs in the following scenarios:

When the MaxCompute data storage reads data by using a tunnel, the following error is
returned if new data is written to the table or partitions in the table:
 ErrorCode=TableModified,ErrorMessage=The specified table has been modified since the
download initiated.

New data is written to the table or partitions in the table. However, the tunnel through
which data is read is disabled. Therefore, the new data cannot be read. If a job is
recovered from failure or is resumed, the data may be incorrect. For example, existing
data is read again but the newly added data may not be read completely.

Q: Can I suspend and resume a job for a full MaxCompute source table? Can I change the
parallelism of the full MaxCompute source table?
A: No, you cannot suspend or resume a job for a full MaxCompute source table or change
the parallelism of the full MaxCompute source table. MaxCompute determines which data
in which partitions need to be read for each parallel job and records the consumption
information for each parallel job in the state based on the parallelism. This way,
MaxCompute can continue reading data from the last read position after the job is
suspended and then resumed or fails. This logic is based on the premise that the
parallelism is configured. If you suspend and then resume a job for a full MaxCompute
source table after you change the parallelism of the source table, the impact on the job
cannot be estimated because some data may be repeatedly read but some data may not
be read.
Q: Why are the partitions before the start offset also read when you set the start time to
 2019-10-11 00:00:00 for a job?

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

126 > Document Version: 20231114

A: The start time is valid only for data sources of the message queue type, such as
DataHub. The start time is invalid for full MaxCompute source tables. After you start a
Realtime Compute for Apache Flink job, Realtime Compute for Apache Flink reads data in
the following ways:

For a partitioned table, fully managed Flink reads data from all existing partitions.
For a non-partitioned table, fully managed Flink reads all existing data.

Q: What do I do if the error message "ErrorMessage=Authorization Failed [4019], You have
NO privilege'ODPS:***'" appears when a job is running?
A: This error occurs because the user identity information specified in the MaxCompute
DDL statements cannot be used to access MaxCompute. Therefore, you must use an
Alibaba Cloud account, a RAM user, or a RAM role to authenticate the user identity. For
more information, see User authentication.

This topic describes how to create an incremental MaxCompute source table in Realtime
Compute for Apache Flink. This topic also describes the parameters in the WITH clause, data
type mappings, and FAQ involved when you create an incremental MaxCompute source table.

Important
This topic applies only to Blink 3.5.0-hotfix and later.
Incremental MaxCompute source tables cannot be used as dimension tables.
Incremental MaxCompute source tables must be partitioned tables.

DDL syntax
create table odps_source(
 id int,
 user_name VARCHAR,
 content VARCHAR
) with (
 type = 'continuous-odps',
 endPoint = 'your_end_point_name',
 project = 'your_project_name',
 tableName = 'your_table_name',
 accessId = 'your_access_id',
 accessKey = 'your_access_key',
 startPartition = 'ds=20180905'
);

Parameters in the WITH clause

Parameter Description Required Remarks

5.6.2.9. Create an incremental MaxCompute source
table

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 127

https://www.alibabacloud.com/help/en/maxcompute/user-guide/user-authentication

type The type of the connector. Yes Set the value to continuous-
odps .

endPoint The endpoint of MaxCompute. Yes For more information, see
Endpoints.

tunnelEndpoi
nt

The endpoint of the
MaxCompute Tunnel service.

Yes: This
parameter
is required
if
MaxCompu
te is
deployed in
a virtual
private
cloud
(VPC).
No: This
parameter
is not
required if
MaxCompu
te is not
deployed in
a VPC.

For more information, see
Endpoints.

project The name of the project to
which the table belongs. Yes N/A.

tableName The name of the table. Yes N/A.

accessId The AccessKey ID that is used
to access MaxCompute. Yes N/A.

accessKey The AccessKey secret that is
used to access MaxCompute. Yes N/A.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

128 > Document Version: 20231114

https://www.alibabacloud.com/help/en/maxcompute/user-guide/endpoints
https://www.alibabacloud.com/help/en/maxcompute/user-guide/endpoints

startPartition

The start partition from which
data is read. When the system
loads partitioned tables, the
system compares
startPartition with all
partitions in each partitioned
table in alphabetical order and
then loads the data that meets
the specified condition from the
partitions.
An incremental MaxCompute
source table can also
continuously listen to
incremental MaxCompute
partitioned tables. After the
source table reads data from
the existing partitions, the
source table continues to listen
to the generation of new
partitions. After a new partition
is generated, the source table
reads data from the new
partition.

Note
An incremental
MaxCompute
source table must
have first-level
partitions. Second-
level partitions are
optional.
If you specify a
second-level
partition, make
sure that the
second-level
partition is placed
after a first-level
partition.
If the partition
specified by the
startPartition
parameter does not
exist, the next
partition is used as
the start partition.

Yes

For example, if startPartition is
set to ds=20191201, data of
all the partitions that meets the
condition of ds >= 20191201
in the incremental
MaxCompute partitioned table
is loaded.
For example, an incremental
MaxCompute partitioned table
has the first-level partition key
column ds and the second-level
partition key column type and
contains the following
partitions:

ds=20191201,type=a
ds=20191201,type=b
ds=20191202,type=a
ds=20191202,type=b
ds=20191202,type=c

The partitions from which data
is read vary based on the
setting of startPartition:

ds=20191202
ds=20191202,type=a
ds=20191202,type=b
ds=20191202,type=c

ds=20191201,type=c
ds=20191202,type=a
ds=20191202,type=b
ds=20191202,type=c

Data type mappings

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 129

Data type of MaxCompute Data type of Realtime Compute for Apache
Flink

TINYINT TINYINT

SMALLINT SMALLINT

INT INT

BIGINT BIGINT

FLOAT FLOAT

DOUBLE DOUBLE

BOOLEAN BOOLEAN

DATETIME TIMESTAMP

TIMESTAMP TIMESTAMP

DECIMAL DECIMAL

BINARY VARBINARY

STRING VARCHAR

Important
Incremental MaxCompute source tables do not support the CHAR, VARCHAR,
ARRAY, MAP, or STRUCT data type.
You can use the STRING data type instead of the VARCHAR data type.

Sample code
One partition is generated in an incremental MaxCompute source table every day. The
partition key column is ds. The incremental MaxCompute source table loads data from
partitions whose partition names are greater than or equal to 20191201 and continuously
listens to the generation of new partitions.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

130 > Document Version: 20231114

-- The incremental MaxCompute source table reads data from partitions in the range of [
ds=20191201, ∞).
CREATE TABLE odps_source (
 cid VARCHAR,
 rt DOUBLE,
) with (
 type = 'continuous-odps',
 endPoint = 'your_end_point_name',
 project = 'your_project_name',
 tableName = 'your_table_name',
 accessId = 'xxxx',
 accessKey = 'xxxx',
 startPartition = 'ds=20191201'
);

CREATE TABLE test (
 cid VARCHAR,
 rt DOUBLE,
) with (
 type='print'
);

INSERT INTO test
SELECT
 cid, rt FROM odps_source;

FAQ
Q: What do I do if the values of the endPoint and tunnelEndpont parameters in the DDL
statement are incorrect?
A: For more information about the endPoint and tunnelEndpont parameters, see Endpoints
in different regions (Internet). Incorrect configuration of parameters may lead to the
following issues:

If the configuration of the endPoint parameter is incorrect, the task publish progress stops
at 91%.
If the tunnelEndpoint parameter is incorrectly configured, the task fails.

Q: How does the incremental MaxCompute data storage read data in an incremental
MaxCompute source table?
A: The incremental MaxCompute data storage reads MaxCompute data by using a tunnel.
Therefore, the read speed and bandwidth are restricted by the bandwidth of the tunnel
used by the incremental MaxCompute source table.
Q: If data of some partitions of an incremental MaxCompute source table has been read,
can the incremental MaxCompute data storage read data that is newly written to these
partitions after a Realtime Compute for Apache Flink job is started?
A: No, the incremental MaxCompute data storage cannot read the new data from the
partitions. The incremental MaxCompute data storage reads data from the partitions of an
incremental MaxCompute source table by using a tunnel. After a Realtime Compute for
Apache Flink job is started, MaxCompute Reader exits when data reading is complete.
Then, MaxCompute Reader does not read new data from the partitions of the incremental
MaxCompute source table.
Q: How do I view partition names of an incremental MaxCompute source table?

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 131

https://www.alibabacloud.com/help/en/maxcompute/user-guide/endpoints

A: You can perform the following steps to view the partition names of an incremental
MaxCompute source table on the table details page:
i. Go to the Data Map to search for the required table name.
ii. Click the table name.
iii. On the right side of the table details page, click the Details tab and then the Partitions

tab. You can view MaxCompute partition names in the Partition Name column.
Q: If an incremental MaxCompute source table is referenced as a data source, can the data
that is appended to an existing partition be read after a job is started?
A: No, the data cannot be read and the job may fail. The MaxCompute data storage uses
 ODPS DOWNLOAD SESSION to read data from tables or partitions. When you create a
 DOWNLOAD SESSION , the MaxCompute server creates an index file, which contains the data
mapping obtained when the DOWNLOAD SESSION is created. Subsequent data reading is
performed based on the data mapping. Therefore, in most cases, the data that is appended
to a MaxCompute table or to a partition in the table after you create a download session
cannot be read. This issue occurs in the following scenarios:

When the MaxCompute data storage reads data by using a tunnel, the following error is
returned if new data is written to the table or partitions in the table:
 ErrorCode=TableModified,ErrorMessage=The specified table has been modified since the
download initiated.

New data is written to the table or partitions in the table. However, the tunnel through
which data is read is disabled. Therefore, the new data cannot be read. If a job is
recovered from failure or is resumed, the data may not be correct. For example, existing
data is read again but the newly added data may not be read completely.

Q: Can I suspend and resume a job for an incremental MaxCompute source table? Can I also
change the parallelism of the incremental MaxCompute source table?
A: No, you cannot suspend or resume a job for an incremental MaxCompute source table, or
change the parallelism of the incremental MaxCompute source table. MaxCompute
determines which data in which partitions need to be read for each parallel job and then
records the consumption information about each parallel job in state data based on the
parallelism. This way, MaxCompute can continue to read data from the most recent read
position after a job is suspended and then resumed or after a job is recovered from a
failover.
If you suspend and then resume a job for an incremental MaxCompute source table after
you change the parallelism of the source table, the impact on the job cannot be estimated
because some data may be repeatedly read and some data may not be read.
Q: What does an incremental MaxCompute source table do if it finds that some data is not
written to the new partition it detects?
A: No mechanism is available to indicate whether data in a partition is complete. If an
incremental MaxCompute source table detects a new partition, the source table
immediately reads data from the partition. If the incremental MaxCompute source table
reads MaxCompute partitioned table T with the partition key column of ds, data in table T is
written in the following methods:

Not recommended: Create a partition, such as ds=20191010 and write data to it. If the
incremental MaxCompute source table consumes table T and detects the new partition
ds=20191010, the source table immediately reads data from the new partition. If the
data written to the partition is incomplete, the data fails to be read.
Recommended: Execute the Insert overwrite table T partition (ds='20191010') ...
statement without the need to create a partition. After the job succeeds, both the
partition and data are displayed.

Q: What do I do if the error message "ErrorMessage=Authorization Failed [4019], You have
NO privilege'ODPS:***'" appears when a job is running?

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

132 > Document Version: 20231114

A: This error occurs because the user identity information specified in the MaxCompute
DDL statements cannot be used to access MaxCompute. Therefore, you must use an
Alibaba Cloud account, a RAM user, or a RAM role to authenticate the user identity. For
more information, see User authentication.

Realtime Compute uses the CREATE TABLE statement to define the schema of a result table
for output data and how data is written into a target result table.
Data can be written into the target storage system by using one of the following methods:
append and update.

Append: If the result table is stored in Log Service, Message Queue (MQ), or an ApsaraDB
for RDS database with the primary key undefined, output data is appended to the result
table. The original data in the result table is not modified.
Update: If the result table is stored in an ApsaraDB for RDS database or a Hadoop database
with a primary key defined, output data is written into the result table as follows:

If the value for the primary key does not exist in the result table, the data record is
inserted into the database.
If the value for the primary key exists in the result table, the existing data record in the
database is overwritten.

Syntax
CREATE TABLE tableName
 (columnName dataType [, columnName dataType]*)
 [WITH (propertyName=propertyValue [, propertyName=propertyValue]*)];

Example
CREATE TABLE rds_output(
id INT,
len INT,
content VARCHAR,
PRIMARY KEY(id)
) WITH (
type='rds',
url='yourDatabaseURL',
tableName='yourTableName',
userName='yourDatabaseUserName',
password='yourDatabasePassword'
);

This topic describes how to create an Oracle database result table. It also describes the
parameters in the WITH clause, data type mapping, and precautions.

5.6.3. Create a result table
5.6.3.1. Overview of result tables

5.6.3.2. Create an Oracle database result table

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 133

https://www.alibabacloud.com/help/en/maxcompute/user-guide/user-authentication

Important
This topic applies only to Blink 3.6.0 and later.
You can create Oracle database result tables only when you use Oracle 19c.

Precautions
In Realtime Compute for Apache Flink, an SQL statement is executed to write each row of
result data to the result table in the destination database.
Realtime Compute for Apache Flink performs the following operations based on whether the
required table exists in the Oracle database:

If the required table does not exist, Realtime Compute for Apache Flink creates a table in
the Oracle database to store the result data.
If the required table exists, Realtime Compute for Apache Flink writes or updates data to
the result table.

The primary keys of logical and physical tables can be different. The primary keys of logical
tables must contain the primary keys of physical tables.
Realtime Compute for Apache Flink uses the APPEND function or the UPSERT function to
insert data into an Oracle database result table.

If no primary key is specified in the table, the APPEND function is used.
If a primary key is specified in the table, the UPSERT function is used. If the primary key
does not exist, the primary key is inserted. If the primary key exists, the primary key is
updated.

Syntax
In Realtime Compute for Apache Flink, you can use an Oracle database to store output data.
The following code shows an example:
CREATE TABLE oracle_sink(
 employee_id BIGINT,
 employee_name VARCHAR,
 employee_age INT,
 PRIMARY KEY(employee_id)
) WITH (
 type = 'oracle',
 url = '<yourUrl>',
 userName = '<yourUserName>',
 password = '<yourPassword>',
 tableName = '<yourTableName>'
);

Parameters in the WITH clause

Parameter Description Requi
red Remarks

type The type of the result table. Yes Set the value to oracle.

url The connection string of the database. Yes jdbc:oracle:thin:@192.1
68.171.62:1521:sit0

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

134 > Document Version: 20231114

userName The username that is used to log on to
the database. Yes None.

password The password that is used to log on to
the database. Yes None.

tableName The name of the table in the database. Yes None.

maxRetryTimes The maximum number of retries for
writing data to a table. No Default value: 10.

batchSize

The number of data records that are
written at a time.

Note
The batchSize parameter
takes effect only when the
primary key is defined.
Write operations are
triggered if the value of
the batchSize or
bufferSize parameter
reaches the specified
threshold.

No Default value: 50.

bufferSize

The number of data records in the
buffer after duplicates are removed.

Note
The bufferSize parameter
takes effect only when the
primary key is defined.
Write operations are
triggered if the value of
the batchSize or
bufferSize parameter
reaches the specified
threshold.

No Default value: 500.

flushIntervalMs

The write timeout period. Unit:
milliseconds.

Note If no data is written
to the database within the period
specified by this parameter, the
system writes the cached data to
the result table again.

No Default value: 500.

excludeUpdate
Columns

Specifies whether to skip the specified
columns when the data of a row in the
table is updated.

Note When the data of a
row in the table is updated, the
primary key is not updated by
default.

No This parameter is empty by
default.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 135

ignoreDelete Specifies whether to skip delete
operations. No Default value: false.

Mapping between field data types

Data type of the Oracle database Data type of Realtime Compute for Apache
Flink

CHAR
VARCHAR
VARCHAR2

VARCHAR

FLOAT DOUBLE

NUMBER BIGINT

DECIMAL DECIMAL

Sample code
The following sample code shows how to create an Oracle database result table in a Realtime
Compute for Apache Flink job.
CREATE TABLE oracle_source (
 employee_id BIGINT,
 employee_name VARCHAR,
 employ_age INT
) WITH (
 type = 'random'
);

CREATE TABLE oracle_sink(
 employee_id BIGINT,
 employee_name VARCHAR,
 employ_age INT,
 primary key(employee_id)
)with(
 type = 'oracle',
 url = 'jdbc:oracle:thin:@192.168.171.62:1521:sit0',
 userName = 'blink_test',
 password = 'blink_test',
 tableName = 'oracle_sink'
);

INSERT INTO oracle_sink
SELECT * FROM oracle_source;

This topic describes how to create a Hologres result table. It also describes the parameters in
the WITH clause, streaming semantics, and data type mapping involved when you create a
Hologres result table.

5.6.3.3. Create a Hologres result table

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

136 > Document Version: 20231114

Important
This topic applies only to Blink 3.6.0 and later. If your Blink version is earlier than
3.6.0, you can

Update your Blink version to 3.6.0 or later. For more information, see
Manage Blink versions of a Realtime Compute for Apache Flink cluster
deployed in exclusive mode.
Download and Install blink-connector-hologres-blink-3.6.8.jar or blink-
connector-hologres-blink-3.7.jar package.

We recommend that you use Hologres 0.7 or later.
Hologres writes data asynchronously. Therefore, you must add
blink.checkpoint.fail_on_checkpoint_error=true to the code so that a failover
is triggered only when a job exception occurs.

Introduction to Hologres
Hologres is compatible with the PostgreSQL protocol and integrates seamlessly with the big
data ecosystem. Hologres supports real-time analysis and the processing of petabytes of data
with high concurrency and low latency. This allows you to use existing Business Intelligence
(BI) tools to easily perform multidimensional analysis and business exploration.

Syntax
In Realtime Compute for Apache Flink, you can use Hologres to store output data. The
following code shows an example:

create table Hologres_sink(
 name varchar,
 age BIGINT,
 birthday BIGINT
) with (
 type='hologres',
 dbname='<yourDbname>',
 tablename='<yourTablename>',
 username='<yourUsername>',
 password='<yourPassword>',
 endpoint='<yourEndpoint>',
 field_delimiter='|' -- This parameter is optional.
);

Parameters in the WITH clause

Parameter Description Required Remarks

type The type of the result table. Yes Set the value to
hologres.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 137

https://static-aliyun-doc.oss-cn-hangzhou.aliyuncs.com/file-manage-files/zh-CN/20221111/xdbb/blink-connector-hologres-blink-3.6.8-fastjson-20220824.092828-1-jar-with-dependencies.jar
https://static-aliyun-doc.oss-cn-hangzhou.aliyuncs.com/file-manage-files/zh-CN/20221111/rrmk/blink-connector-hologres-blink-3.7-20221110.212338-1192-jar-with-dependencies.jar

dbname

The name of the database.

Note
If the public schema is not used, you
must set tableName to
schema.tableName.

Yes N/A.

tablename The name of the table. Yes N/A.

username The username that is used to access the
database. Yes N/A.

password The password that is used to access the
database. Yes N/A.

endpoint The virtual private cloud (VPC) endpoint of
Hologres. Yes

For more
information, see
Endpoints for
connecting to
Hologres.

field_delimiter

The delimiter used between rows when
data is being exported.

Important
Do not insert delimiters in data. This
parameter takes effect only when the
bulkload semantics is used.

No Default value:
"\u0002".

mutateType
The streaming write semantics. For more
information, see Streaming data
semantics.

No Default value:
insertorignore.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

138 > Document Version: 20231114

https://www.alibabacloud.com/help/en/hologres/user-guide/endpoints-for-connecting-to-hologres

partitionrouter Specifies whether to write data to a
partitioned table. No

Default value:
false.

Note
For Blink
3.6.X, the
Hologres
streaming sink
cannot
automatically
create
partitioned
tables. Before
Realtime
Compute for
Apache Flink
writes data to
a partitioned
table, you
must manually
create a sub-
table in
Hologres.

ignoredelete Specifies whether to ignore retraction
messages. No

Default value:
false.

Note
This
parameter
takes effect
only after the
streaming
data
semantics is
used.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 139

createPartTable

Specifies whether to automatically create
a non-existent partitioned table to which
data is written based on partition values.

Note
If the partition values contain hyphens
(-), partitioned tables cannot be
automatically created.

No

false: Partitioned
tables cannot be
automatically
created. This is
the default
value.
true: Partitioned
tables can be
automatically
created.

Note
Only Blink
versions later
than 3.7
support this
parameter.

Streaming data semantics
Stream processing, also known as streaming data or event processing, refers to the
continuous processing of a series of unbounded data or events. In most cases, the system
that processes streaming data or events allows you to specify a reliability pattern or
processing semantics to ensure data accuracy. Network or device failures may cause a data
loss.
Semantics can be classified into the following types based on the configurations of the
Hologres streaming sink that you use and the attributes of the Hologres table:

Exactly-once: The system processes data or events only once even multiple faults occur.
At-least-once: If streaming data or events to be processed are lost, the system transfers
the data again from the transmission source. Therefore, the system may process streaming
data or events for multiple times. If the first retry succeeds, no further retries are required.

When you use streaming semantics in a Hologres result table, take note of the following
points:

If no primary keys have been configured in the Hologres physical table, the Hologres
streaming sink uses the at-least-once semantics.
If primary keys have been configured in the Hologres physical table, the Hologres
streaming sink uses the exactly-once semantics based on the primary keys. If multiple
records with the same primary key are written to the table, you must set the
mutationType parameter to determine how the result table is updated. This parameter
has the following valid values:

insertorignore (default value): Hologres keeps the first record and discards the
subsequent records.
insertorreplace: Hologres completely replaces the existing record with the one that
arrives later.
insertorupdate: Hologres partially replaces the existing record with the one that arrives
later.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

140 > Document Version: 20231114

Note
If the mutationType parameter is set to insertorupdate or insertorreplace,
the system updates data based on the primary key.
The number of columns in the result table defined by Blink can be different from
the number of columns in the Hologres physical table. Make sure that the value
null can be used to fill the missing columns. Otherwise, an error is returned.

By default, the Hologres streaming sink can import data to only one non-partitioned table. If
the sink imports data into the parent table of a partitioned table, data queries fail even if
data import succeeds. To enable data to be automatically written to a partitioned table, you
can set the partitionRouter parameter to true. Take note of the following points:

You must set tablename to the name of the parent table.
Blink connectors do not automatically create partitioned tables. We recommend that you
create a partitioned table before you import data. Otherwise, the data fails to be
imported.

Merge data into a wide table
If you need to write data from multiple streaming jobs to one Hologres wide table, you can
merge the data into a wide table.
For example, one Flink data stream contains fields A, B, and C, the other contains fields A, D,
and E. The Hologres wide table WIDE_TABLE contains fields A, B, C, D, and E, among which
field A is the primary key. You can perform the following operations:

1. Execute Flink SQL statements to create two Hologres result tables. One table is used to
declare fields A, B, and C, and the other is used to declare fields A, D, and E. Map the two
result tables to the Hologres wide table WIDE_TABLE.

2. Parameter settings of the two Hologres result tables:
Set mutatetype to insertorupdate. This indicates that data is updated based on the
primary key.
Set ignoredelete to true. This prevents retraction messages from generating Delete
requests.

3. Insert data from the two Flink data streams into the two result tables.

Note
Limits:

The wide table must have a primary key.
The data of each stream must contain all the fields in the primary key.
If the wide table is a column-oriented table and the requests per second (RPS)
value is large, the CPU utilization increases. We recommend that you disable
dictionary encoding for the fields in the table.

Data type mapping

Hologres BLINK

INT INT

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 141

INT[] ARRAY<INT>

BIGINT BIGINT

BIGINT[] ARRAY<BIGINT>

REAL FLOAT

REAL[] ARRAY<FLOAT>

DOUBLE PRECISION DOUBLE

DOUBLE PRECISION[] ARRAY<DOUBLE>

BOOLEAN BOOLEAN

BOOLEAN[] ARRAY<BOOLEAN>

TEXT VARCHAR

TEXT[] ARRAY<VARCHAR>

NUMERIC DECIMAL

DATE DATE

TIMESTAMP WITH TIMEZONE TIMESTAMP

This topic describes how to create an AnalyticDB for MySQL V2.0 result table. It also
describes the mapping between the field data types of AnalyticDB for MySQL and Realtime
Compute for Apache Flink.

5.6.3.4. Create an AnalyticDB for MySQL V2.0
result table

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

142 > Document Version: 20231114

Important
This topic applies only to Blink 1.4.5 and later.
You are allowed to define an auto-increment primary key for an AnalyticDB for
MySQL V2.0 database. If you want to use the auto-increment primary key, do not
declare the auto-increment field in a data definition language (DDL) statement. For
example, if you use ID as an auto-increment field, do not declare the ID field in the
DDL statement. When a row of output data is written to the ApsaraDB RDS for
MySQL database, the value for the auto-increment field is automatically filled.

Introduction to AnalyticDB for MySQL
AnalyticDB for MySQL is a real-time online analytical processing (OLAP) service that is
developed by Alibaba Cloud. It is a high concurrency service that has excellent performance
in processing large amounts of data. AnalyticDB for MySQL allows you to query and analyze
hundreds of billions of data records within milliseconds.

DDL syntax

Note For more information about how to create an AnalyticDB for MySQL V3.0
result table, see Create an AnalyticDB for MySQL V3.0 result table.

In Realtime Compute for Apache Flink, you can use AnalyticDB for MySQL V2.0 to store output
data. The following code shows an example:
CREATE TABLE stream_test_hotline_agent (
id INTEGER,
len BIGINT,
content VARCHAR,
PRIMARY KEY(id)
) WITH (
type='ads',
url='yourDatabaseURL',
tableName='<yourDatabaseTableName>',
userName='<yourDatabaseUserName>',
password='<yourDatabasePassword>',
batchSize='20'
);

Note
We recommend that you use the storage registration feature. For more
information, see Register an AnalyticDB for MySQL instance.
The primary key that is declared in an AnalyticDB for MySQL result table must be
consistent with that in an AnalyticDB for MySQL database. The primary key is case-
sensitive. Inconsistency may cause the "array index out of bounds" error.

Parameters in the WITH clause
Parameter Description Remarks

type The type of the
result table. Set the value to ads.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 143

url

The Java
Database
Connectivity
(JDBC) URL of a
database.

The URL of the AnalyticDB for MySQL database, for
example, url ='jdbc:mysql://databaseName****-cn-
shenzhen-
a.ads.aliyuncs.com:10014/databaseName' . The
following descriptions about the parameters in the URL
are provided:

Perform the following steps to query the URI:
i. Log on to the AnalyticDB for MySQL console.
ii. Click the name of the cluster that you want to access

to go to the Basic Information page.
iii. In the Connection Information section, view the

URL.
The databaseName parameter specifies the name of
the AnalyticDB for MySQL database or the name of the
AnalyticDB for MySQL instance.

tableName
The name of the
table in the
database

None.

username
The username
that is used to
log on to the
database.

None.

password
The password
that is used to
log on to the
database

None.

maxRetryTimes

The maximum
number of
retries for
writing data to
the table.

Optional. Default value: 10.

bufferSize

The maximum
number of data
records that can
be stored in the
buffer before
data
deduplication is
triggered.

Optional. Default value: 5000. This value indicates that
data deduplication is triggered if the number of input data
records in the buffer reaches 5,000.

batchSize
The number of
data records
that are written
at a time.

Optional. Default value: 1000.

Note If error code 20015 is returned, the
batchSize parameter is set to a large value. For
AnalyticDB for MySQL databases, the size of data
records that are written at a time cannot exceed 1
MB. If the batchSize parameter is set to 1000 , the
average size of each data record cannot exceed 1
KB.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

144 > Document Version: 20231114

https://ads.console.aliyun.com/?spm=a2c4g.11186623.2.23.2c952b809T8asM

batchWriteTimeoutM
s

The timeout
period for
writing data.

Optional. Default value: 5000. Unit: milliseconds. This
value indicates that if the number of input data records
does not reach the value specified by the batchSize
parameter within 5,000 milliseconds, all cached data is
written to the result table.

connectionMaxActiv
e

The maximum
number of
connections in a
connection pool.

Optional. Default value: 30.

ignoreDelete
Specifies
whether to skip
the delete
operation.

Default value: false.

Field type mapping
We recommend that you declare the mapping between the field data types of AnalyticDB for
MySQL and Realtime Compute for Apache Flink in DDL statements.

Data type of AnalyticDB for MySQL Data type of Realtime Compute for Apache
Flink

BOOLEAN BOOLEAN

TINYINT

INTSAMLLINT

INT

BIGINT BIGINT

DOUBEL DOUBLE

VARCHAR VARCHAR

DATE DATE

TIME TIME

TIMESTAMP TIMESTAMP

This topic describes how to create a Log Service result table in Realtime Compute for Apache
Flink.

Important
This topic applies only to Blink 1.4.5 and later.
Log Service result tables support only fields of the VARCHAR type.

What is Log Service?

5.6.3.5. Create a Log Service result table

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 145

Log Service is an end-to-end data logging service that is developed by Alibaba Cloud. Log
Service allows you to collect, consume, ship, query, and analyze log data in a quick manner. It
improves the operations and maintenance (O&M) efficiency and provides the capability to
process large amounts of log data. Log Service stores streaming data. Therefore, Realtime
Compute for Apache Flink can use Log Service tables as result tables for the processing of
streaming data.

DDL syntax
In Realtime Compute for Apache Flink, you can use Log Service to store output data. The
following code shows an example.

create table sls_stream(
 `name` VARCHAR,
 age BIGINT,
 birthday BIGINT
)with(
 type='sls',
 endPoint='http://cn-hangzhou-corp.sls.aliyuncs.com',
 accessId='<yourAccessId>',
 accessKey='<yourAccessKey>',
 project='<yourProjectName>',
 logstore='<yourLogstoreName>'
);

Note
We recommend that you use the storage registration feature of Log Service. For more
information, see Register a Log Service project.

Parameters in the WITH clause

Parameter Description Requir
ed Remarks

endPoint The endpoint of Log
Service. Yes Endpoints

project The name of a
project. Yes N/A.

logstore
The name of the
table in the
database.

Yes N/A.

accessId
The AccessKey ID
that is used to
access Log Service.

Yes N/A.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

146 > Document Version: 20231114

https://www.alibabacloud.com/help/en/sls/developer-reference/endpoints

accessKey The AccessKey
Secret Yes N/A.

topic An attribute field. No
This parameter is empty by default. You
can use the selected field as the topic
attribute field.

timestampColumn An attribute field. No

This parameter is empty by default. You
can use the selected field as the
 timestamp attribute field. The data type

of this parameter must be INT. If no field is
selected, the current time is used as the
attribute field.

source

An attribute field.
The source of a log
entry. For example,
the value of this
field can be the IP
address of the
server where the
log entry is
generated.

No
This parameter is empty by default. You
can use the selected field as the source
attribute field.

partitionColumn The partition key
column. No

This parameter is required if the mode
parameter is set to partition .

flushIntervalMs

The interval at
which data writing
is triggered. No Default value: 2000. Unit: milliseconds.

reserveMilliSecond

Specifies whether
to reserve the
millisecond
component in a
value of the
TIMESTAMP data
type.

No

Default value: false. This value indicates
that the millisecond component is not
reserved.

Note
This parameter is available in Realtime
Compute for Apache Flink V2.2.6 and
later.

Data type mapping
The following table describes the mapping between the data types of Log Service and
Realtime Compute for Apache Flink. We recommend that you declare the mappings in a DDL
statement.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 147

Data type of Log Service Data type of Realtime Compute for Apache
Flink

STRING VARCHAR

Sample code
The following sample code demonstrates how to create a Log Service result table in a
Realtime Compute for Apache Flink job.

CREATE TABLE random_input (
 a VARCHAR,
 b VARCHAR) with (
 type = 'random'
);

create table sls_output(
 a varchar,
 b varchar
)with(
 type='sls',
 endPoint='http://cn-hangzhou-corp.sls.aliyuncs.com',
 accessId='<yourAccessId>',
 accessKey='<yourAccessKey>',
 project='ali-cloud-streamtest',
 logStore='stream-test2'
);

INSERT INTO sls_output
SELECT a, b
FROM random_input;

FAQ
Q: How do I specify the topic field in a Log Service result table?
A: You can specify the topic field as a field in the result table. For example, specify
 topic='age' in the sample code. After the configuration is complete, the value of the age
field is written into Log Service but Log Service does not write the age field into the
downstream storage systems.

References
For more information about Log Service, see What is Simple Log Service?.
For more information about how to consume Log Service data in Realtime Compute for
Apache Flink, see Use Realtime Compute to consume log data.

This topic describes how to create a ApsaraMQ for RocketMQ result table in Realtime
Compute for Apache Flink. This topic also describes the parameters in the WITH clause used
when you create a ApsaraMQ for RocketMQ result table.

5.6.3.6. Create a result table

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

148 > Document Version: 20231114

https://www.alibabacloud.com/help/en/sls/product-overview/what-is-log-service
https://www.alibabacloud.com/help/en/sls/user-guide/use-realtime-compute-to-consume-log-data

Important
This topic applies only to Blink 1.4.5 and later.
If you need to use ApsaraMQ for RocketMQ that has separate namespaces, use
Blink 3.X.

Introduction to ApsaraMQ for RocketMQ
ApsaraMQ for RocketMQ is a professional message middleware that is developed by Alibaba
Cloud for commercial use. It is a core product for the enterprise-level Internet architecture.
Based on the high-availability distributed cluster technology, ApsaraMQ for RocketMQ
provides comprehensive cloud messaging services, including message publishing and
subscription, message tracing, resource statistics, message scheduling or delaying,
monitoring, and alerts.

CSV format
You can specify ApsaraMQ for RocketMQ tables as result tables for Realtime Compute for
Apache Flink to process streaming data. In the following sample code, the DDL statement
creates a ApsaraMQ for RocketMQ result table to store streaming data in the CSV format:

CREATE TABLE stream_test_hotline_agent (
id INTEGER,
len BIGINT,
content VARCHAR
) WITH (
type='mq',
endpoint='<yourEndpoint>',
accessID='<yourAccessId>',
accessKey='<yourAccessSecret>',
topic='<yourTopicName>',
producerGroup='<yourGroupName>',
tag='<yourTagName>',
encoding='utf-8',
fieldDelimiter=',',
retryTimes='5',
sleepTimeMs='500'
);

Binary format
You can specify ApsaraMQ for RocketMQ tables as result tables for Realtime Compute for
Apache Flink to process streaming data. In the following sample code, the DDL statement
creates a ApsaraMQ for RocketMQ result table to store streaming data in the binary format:

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 149

CREATE TABLE source_table (
 commodity VARCHAR
)WITH(
 type='random'
);

CREATE TABLE result_table (
 mess VARBINARY
) WITH (
 type = 'mq',
 endpoint='<yourEndpoint>',
 accessID='<yourAccessId>',
 accessKey='<yourAccessSecret>',
 topic='<yourTopicName>',
 producerGroup='<yourGroupName>'
);

INSERT INTO result_table
SELECT
CAST(SUBSTRING(commodity,0,5) AS VARBINARY) AS mess
FROM source_table;

Note
The cast(varchar as varbinary) method is supported only in Blink 2.0 or later. If the
Blink version is earlier than 2.0, update the Blink version first. For more information, see
Manage Blink versions of a Realtime Compute for Apache Flink cluster deployed in exclusive mode.

Parameters in the WITH clause

Param
eter Description Remarks

type The type of the
result table. Set the value to mq.

topic

The name of the
ApsaraMQ for
RocketMQ topic to
which data is
written.

N/A.

Two types of ApsaraMQ for RocketMQ services are provided:
internal ApsaraMQ for RocketMQ and public ApsaraMQ for
RocketMQ. Select an endpoint based on the type of ApsaraMQ for
RocketMQ that you purchase.

For jobs that run on Blink 3.7.10 or later, use Transmission
Control Protocol (TCP) endpoints. For more information, see
Announcement on the settings of internal TCP endpoints. You can
use one of the following methods to obtain the endpoints:

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

150 > Document Version: 20231114

https://www.alibabacloud.com/help/en/apsaramq-for-rocketmq/product-overview/announcement-on-the-settings-of-internal-tcp-endpoints#concept-2351917

endpoin
t

The endpoint of
ApsaraMQ for
RocketMQ

Internal endpoints of ApsaraMQ for RocketMQ that resides in
the classic network or a virtual private cloud (VPC) of Alibaba
Cloud: Log on to the ApsaraMQ for RocketMQ console. In the
left-side navigation pane, click Instances. On the page that
appears, find the required instance, and click Details in the
Actions column. On the Instance Details page, click the
Endpoints tab. In the TCP Endpoint section, you can view
the endpoint that corresponds to Internal Access.
Public endpoint of ApsaraMQ for RocketMQ: Log on to the
ApsaraMQ for RocketMQ console. In the left-side navigation
pane, click Instances. On the page that appears, find the
required instance, and click Details in the Actions column. On
the Instance Details page, click the Endpoints tab. In the TCP
Endpoint section, you can view the endpoint that corresponds
to Internet Access.

For jobs that run on Blink of a version earlier than 3.7.10, use the
following endpoints:

Internal endpoints of ApsaraMQ for RocketMQ that resides in
the classic network or a VPC of Alibaba Cloud:

China (Hangzhou), China (Shanghai), China (Qingdao), China
(Beijing), China (Shenzhen), and China (Hong Kong):
 onsaddr-internal.aliyun.com:8080 .

Singapore (Singapore): ap-southeastaddr-
internal.aliyun.com:8080 .

UAE (Dubai): ons-me-east-1-
internal.aliyuncs.com:8080 .

India (Mumbai): ons-ap-south-1-
internal.aliyuncs.com:8080 .

Malaysia (Kuala Lumpur): ons-ap-southeast-3-
internal.aliyun.com:8080 .

Public endpoint of ApsaraMQ for RocketMQ: onsaddr-
internet.aliyun.com:80 .

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 151

Important
If you use the ApsaraMQ for RocketMQ connector in
Blink of a version earlier than 3.7.10, you must update
your Realtime Compute for Apache Flink job to Blink
3.7.10 or later and change the value of the endpoint
parameter to the new endpoint of ApsaraMQ for
RocketMQ. This reduces the risks of instability or
unavailability that are caused by the old endpoint of
ApsaraMQ for RocketMQ. For more information, see The
endpoints of ApsaraMQ for RocketMQ are unavailable
and Realtime Compute for Apache Flink deployments
need to be updated to adapt to the change.
Internal ApsaraMQ for RocketMQ does not
support cross-region access. For example, if your
Realtime Compute for Apache Flink service resides in
the China (Hangzhou) region but your ApsaraMQ for
RocketMQ service resides in the China (Shanghai)
region, Realtime Compute for Apache Flink cannot
access this ApsaraMQ for RocketMQ service.
By default, Realtime Compute for Apache Flink clusters
in exclusive mode cannot access the Internet. If you
want to access the Internet, configure a NAT gateway.
The network security policies of Alibaba Cloud
dynamically change. As a result, network connection
issues may occur when Realtime Compute for Apache
Flink connects to the public ApsaraMQ for RocketMQ.
We recommend that you use the internal ApsaraMQ for
RocketMQ service.

accessI
D AccessKey ID N/A.

accessK
ey AccessKey Secret N/A.

produce
rGroup

Specifies the name
of the producer
group to which
messages are
written.

N/A.

tag The message tag. Optional. This parameter is empty by default.

fieldDeli
miter The field delimiter.

Optional. Default value: \u0001 . The delimiter varies based on
the following modes:

In read-only mode, the \u0001 delimiter is used. \u0001
is invisible in read-only mode.
In edit mode, the ^A delimiter is used.

encodin
g

The encoding
format. Optional. Default value: utf-8 .

retryTi
mes

The number of
retries for writing
data to the table.

Optional. Default value: 10.

sleepTi
meMs The retry interval. Optional. Default value: 1000. Unit: milliseconds.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

152 > Document Version: 20231114

https://www.alibabacloud.com/help/en/flink/product-overview/service-notices

instanc
eID

The ID of a
ApsaraMQ for
RocketMQ instance.

If the ApsaraMQ for RocketMQ instance does not have a separate
namespace, the instanceID parameter cannot be used.
If the ApsaraMQ for RocketMQ instance has a separate
namespace, the instanceID parameter is required.

This topic describes how to create a Tablestore result table in Realtime Compute for Apache
Flink. It also describes the mappings between the field data types of Tablestore and Realtime
Compute for Apache Flink.

Important
This topic applies only to Blink 1.4.5 and later.

Introduction to Tablestore
Tablestore is a distributed NoSQL database service built on the Apsara distributed operating
system of Alibaba Cloud. Tablestore adopts data sharding and load balancing technologies to
scale out and handle concurrent transactions. You can use Tablestore to store and query a
large amount of structured data in real time.

DDL syntax
In Realtime Compute for Apache Flink, you can use Tablestore to store output data. The
following code shows an example:

CREATE TABLE stream_test_hotline_agent (
 name VARCHAR,
 age BIGINT,
 birthday BIGINT,
 PRIMARY KEY (name,age)
) WITH (
 type='ots',
 instanceName='<yourInstanceName>',
 tableName='<yourTableName>',
 accessId='<yourAccessId>',
 accessKey='<yourAccessSecret>',
 endPoint='<yourEndpoint>',
 valueColumns='birthday'
);

Note
We recommend that you use the storage registration feature. For more
information, see Register a Tablestore instance.
The value of the valueColumns parameter cannot be a declared primary key.
The declared Tablestore result table must contain at least one attribute column
and the primary key column.

Parameters in the WITH clause

5.6.3.7. Create a Tablestore result table

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 153

Parameter Description Remarks

type The type of the result
table. Set the value to ots.

instanceName The name of a
Tablestore instance. None.

tableName The name of the table
in the database None.

endPoint The endpoint of the
instance. For more information, see Endpoints.

accessId AccessKey ID None.

accessKey AccessKey Secret None.

valueColumns The name of a column
to be inserted.

Separate multiple column names with commas
(,), for example, 'ID,NAME' .

bufferSize

The maximum number
of data records that
can be stored in the
buffer before
deduplication is
triggered.

Optional. Default value: 5000. This value
indicates that deduplication is triggered if the
number of input data records in the buffer
reaches 5,000.

Note
Realtime Compute for Apache Flink removes
data record duplicates based on the primary
key of the Tablestore result table. You can
set bufferSize to the number of data record
duplicates to be removed. Then, Realtime
Compute for Apache Flink writes the data
records after duplicates are removed. You
can set batchSize to the number of data
records to be written at a time.

batchWriteTimeoutMs The write timeout
period.

Optional. Default value: 5000. Unit: milliseconds.
This value indicates that if the number of input
data records does not reach the value specified
by the batchSize parameter within 5,000
milliseconds, all cached data is written into the
result table.

batchSize
The number of data
records that can be
written at a time.

Optional. Default value: 100.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

154 > Document Version: 20231114

https://www.alibabacloud.com/help/en/tablestore/product-overview/endpoints#concept-bsx-btj-bfb

retryIntervalMs The retry interval. Optional. Default value: 1000. Unit: milliseconds.

maxRetryTimes
The maximum number
of retries for writing
data to a table.

Optional. Default value: 100.

ignoreDelete
Specifies whether to
ignore DELETE
operations.

Default value: false.

Field type mapping

Data type of Tablestore Data type of Realtime Compute for Apache
Flink

INTEGER BIGINT

STRING VARCHAR

BOOLEAN BOOLEAN

DOUBLE DOUBLE

Note
You must define a primary key in a Tablestore result table. Output data is appended to
the Tablestore result table to update the result. For more information about update
methods, see Update type.

This topic describes how to create an ApsaraDB RDS result table in Realtime Compute for
Apache Flink. It also describes the parameters in the WITH clause and data type mapping
used when you create an ApsaraDB RDS result table.

Important
Realtime Compute for Apache Flink does not allow you to use ApsaraDB RDS for MySQL
V8.0 by using the storage registration method. To use ApsaraDB RDS for MySQL V8.0, we
recommend that you configure a plaintext AccessKey pair. For more information about
the storage registration method, see Overview.

Introduction to ApsaraDB RDS

5.6.3.8. Create an ApsaraDB RDS result table

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 155

https://www.alibabacloud.com/help/en/flink/overview-10

ApsaraDB RDS is a stable, reliable, and scalable online database service. ApsaraDB RDS
supports a wide range of database engines, such as MySQL, SQL Server, PostgreSQL, and
Postgres Plus Advanced Server (PPAS), based on Apsara Distributed File System and high-
performance storage services. ApsaraDB RDS provides comprehensive solutions for database
operations and maintenance (O&M), such as disaster recovery, data backup, data recovery
and restoration, monitoring, and data migration.

Note
ApsaraDB RDS, Distributed Relational Database Service (DRDS), and PolarDB use the
same parameters in the WITH clause. If you want to use an ApsaraDB RDS, DRDS, or
PolarDB table as a result table, make sure that a real table exists.

DDL syntax
The following sample code shows how to create an ApsaraDB RDS or DRDS result table. Only
ApsaraDB RDS for MySQL is supported.

CREATE TABLE rds_output(
 id INT,
 len INT,
 content VARCHAR,
 PRIMARY KEY (id,len)
) WITH (
 type='rds',
 url='<yourDatabaseURL>',
 tableName='<yourDatabaseTable>',
 userName='<yourDatabaseUserName>',
 password='<yourDatabasePassword>'
);

Note
In Realtime Compute for Apache Flink, each row of output data is converted to a
line of SQL statement and then written and executed in the destination database. If
you want to write multiple rows of output data at a time, you must add ?
rewriteBatchedStatements=true to the end of the URL. This improves the system
performance.
You can define an auto-increment primary key for the ApsaraDB RDS for SQL
database that stores the result table. If you want to use the auto-increment
primary key, do not declare the auto-increment field in the DDL statement. For
example, if you use ID as an auto-increment field, do not declare the ID field in the
DDL statement. When a row of output data is written to the ApsaraDB RDS for
MySQL database, the value for the auto-increment field is automatically filled.
We recommend that you use the storage registration method to connect to the
database. For more information, see Register an ApsaraDB for RDS instance.
You must declare at least one non-primary key in the DDL statement. Otherwise,
an error is returned.

Parameters in the WITH clause

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

156 > Document Version: 20231114

Paramet
er Description

Require
d Remarks

type The type of the result
table. Yes Set the value to rds .

url
The Java Database
Connectivity (JDBC)
URL of the database.

Yes

Set the value in the jdbc:mysql://<Internal
endpoint>/<databaseName> format. Replace
databaseName with the name of your database.
For more information about the internal endpoint,
see View and change the internal and public
endpoints and port numbers of an ApsaraDB RDS
for MySQL instance.

tableNa
me The name of the table. Yes N/A.

userNam
e

The username that is
used to access the
database.

Yes N/A.

password
The password that is
used to access the
database.

Yes N/A.

maxRetr
yTimes

The maximum number
of retries that are
allowed to write data
to the table.

No Default value: 10.

batchSiz
e

The number of data
records that is written
at a time.

No Default value: 4096.

bufferSiz
e

The maximum number
of data records that
can be stored in the
buffer before data
deduplication is
triggered.

No Default value: 10000.

flushInter
valMs

The interval at which
the cache is cleared. No

Default value: 2000. Unit: milliseconds. This value
indicates that if the number of input data records
does not reach the value specified by the
bufferSize parameter within 2,000 milliseconds,
all cached data is written to the result table.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 157

https://www.alibabacloud.com/help/en/rds/apsaradb-rds-for-mysql/view-and-change-the-internal-and-public-endpoints-and-port-numbers-of-an-apsaradb-rds-for-mysql-instance/#section-0jj-0ib-qjn

excludeU
pdateCol
umns

Specifies whether to
ignore the update of
the specified field.

No
This parameter is empty by default. If it is empty,
the primary key column is not updated. When
data with the same primary key is updated, the
specified columns are not updated.

ignoreDe
lete

Specifies whether to
skip the delete
operation.

No Default value: false. This value indicates that the
delete operation is supported.

partition
By

The columns based on
which Realtime
Compute for Apache
Flink performs hash
partitioning.

No

This parameter is empty by default. Before
Realtime Compute for Apache Flink writes data to
the sink node, Realtime Compute for Apache
Flink performs hash partitioning based on the
value of this parameter. The data then flows to
the relevant hash node.

Data type mapping

Data type of ApsaraDB RDS Data type of Realtime Compute for Apache
Flink

BOOLEAN BOOLEAN

TINYINT TINYINT

SMALLINT SMALLINT

INT INT

BIGINT BIGINT

FLOAT FLOAT

DECIMAL DECIMAL

DOUBLE DOUBLE

DATE DATE

TIME TIME

TIMESTAMP TIMESTAMP

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

158 > Document Version: 20231114

VARCHAR VARCHAR

VARBINARY VARBINARY

JDBC parameters

Parameter Description Default
value

Since
version
(JDBC
driver)

useUnicode
Specifies whether to use the Unicode character
set. If you want to set the characterEncoding
parameter to GB2312 or GBK, you must set this
parameter to true.

false 1.1g

characterEnc
oding

The character encoding format, such as GB2312
or GBK. If useUnicode is set to true, you must
specify a character encoding format.

false 1.1g

autoReconne
ct

Specifies whether to automatically re-establish a
connection when the connection to the database
is unexpectedly interrupted.

false 1.1

autoReconne
ctForPools

Specifies whether to use the reconnection policy
for a database connection pool. false 3.1.3

failOverRead
Only

Specifies whether the database is read-only after
it is automatically reconnected. true 3.0.12

maxReconnec
ts

Specifies the maximum number of reconnection
attempts allowed if the autoReconnect parameter
is set to true.

3 1.1

initialTimeout
Specifies the interval between two reconnection
attempts if the autoReconnect parameter is set to
true. Unit: seconds.

2 1.1

connectTimeo
ut

Specifies the timeout period when you use a
socket connection to access the database server.
Unit: milliseconds. Default value: 0. This value
indicates that the connection never times out.
This parameter applies to JDK V1.4 and later.

0 3.0.1

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 159

socketTimeou
t

The timeout period for a socket-based read or
write operation. Unit: milliseconds. Default value:
0. This value indicates that the read or write
operation never times out.

0 3.0.1

Sample code
The following sample code shows how to create an ApsaraDB RDS result table in a Realtime
Compute for Apache Flink job.

CREATE TABLE source (
 id INT,
 len INT,
 content VARCHAR
) with (
 type = 'random'
);

CREATE TABLE rds_output(
 id INT,
 len INT,
 content VARCHAR,
 PRIMARY KEY (id,len)
) WITH (
 type='rds',
 url='<yourDatabaseURL>',
 tableName='<yourDatabaseTable>',
 userName='<yourDatabaseUserName>',
 password='<yourDatabasePassword>'
);

INSERT INTO rds_output
SELECT id, len, content FROM source;

FAQ
Q: When output data is written to an ApsaraDB RDS result table, is a new data record
inserted into the table or is the result table updated based on the primary key value?
A: If a primary key is defined in the DDL statement, the following statement is executed to
write output data: INSERT INTO tablename(field1,field2, field3, ...) VALUES(value1,
value2, value3, ...) ON DUPLICATE KEY UPDATE field1=value1,field2=value2, field3=value3,
...; . If the primary key value in the output data exists in the table, the matching record is
updated. Otherwise, the output data is inserted as a new record. If no primary key is
defined in the DDL statement, the INSERT INTO statement is executed to insert the
output data.
Q: How do I perform GROUP BY operations by using the unique index of an ApsaraDB RDS
result table?
A: Use the following method to resolve the issue:

You must declare the unique index in the GROUP BY clause in your Realtime Compute for
Apache Flink job.
An ApsaraDB RDS table has only one auto-increment primary key, which cannot be
declared as a primary key in a Realtime Compute for Apache Flink job.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

160 > Document Version: 20231114

This topic describes how to create a MaxCompute result table in Realtime Compute for
Apache Flink. This topic also describes the parameters in the WITH clause, data type
mappings, and FAQ involved when you create a MaxCompute result table.

Important
Only Blink 1.5.1 and later support MaxCompute result tables.
A clustered table of MaxCompute cannot be used as a result table.

Principles
The MaxCompute sink works in two phases:

1. Writes data. The MaxCompute sink calls an interface in the MaxCompute SDK to write data
to the buffer. Then, the sink uploads data to the temporary files of MaxCompute at the
specified interval or when the data size in the buffer exceeds 64 MB.

2. Commits sessions. When a task creates checkpoints, the MaxCompute sink calls the Tunnel
commit method to commit sessions and moves temporary files to the data directory of the
MaxCompute table. Then, the MaxCompute sink modifies the metadata.

Note
The commit method does not provide atomicity. Therefore, the MaxCompute sink
supports at-least-once delivery instead of exactly-once delivery.

DDL syntax
In Realtime Compute for Apache Flink, you can use MaxCompute to store output data. The
following code shows an example:

Note
The names, sequence, and types of the fields that are defined in the data definition
language (DDL) statement must be the same as those in the MaxCompute physical table.
Otherwise, the queried data in the MaxCompute physical table may be /n .

create table odps_output(
 id INT,
 user_name VARCHAR,
 content VARCHAR
) with (
 type = 'odps',
 endPoint = '<YourEndPoint>',
 project = '<YourProjectName>',
 tableName = '<YourtableName>',
 accessId = '<yourAccessKeyId>',
 accessKey = '<yourAccessKeySecret>',
 `partition` = 'ds=2018****'
);

5.6.3.9. Create a MaxCompute result table

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 161

Parameters in the WITH clause

Parameter Description Require
d Remarks

type The type of the
result table. Yes Set the value to odps .

endPoint The endpoint of
MaxCompute. Yes For more information, see Endpoints.

tunnelEndpo
int

The endpoint of
MaxCompute
Tunnel.

Yes

For more information, see Endpoints.

Note
This parameter is required if MaxCompute is
deployed in a virtual private cloud (VPC).

project
The name of the
MaxCompute
project.

Yes N/A.

tableName The name of the
table. Yes N/A.

accessId
The AccessKey ID
that is used to
access
MaxCompute.

Yes N/A.

accessKey
The AccessKey
secret that is
used to access
MaxCompute.

Yes N/A.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

162 > Document Version: 20231114

https://www.alibabacloud.com/help/en/maxcompute/user-guide/endpoints
https://www.alibabacloud.com/help/en/maxcompute/user-guide/endpoints

partition The name of a
partition. No

This parameter is required if a partitioned table
exists.

Static partitions
For example, `partition`='ds=20180905'
indicates that data is written to the
 ds=20180905 partition.

Dynamic partition (available in Blink 3.2.1 and
later)
If the partition values are not displayed in
plaintext mode, data is written to different
partitions based on the values of the partition
key columns specified in the data. For example,
 `partition`='ds' indicates that data is

written to partitions based on the value of the
 ds field.

If you want to create multi-level dynamic
partitions, make sure that the sequence of the
partition fields in the WITH clause and DDL
statement of the MaxCompute result table is
consistent with the field sequence of the
MaxCompute physical table. Multiple partition
fields are separated by commas (,).

Note
In the CREATE TABLE statement, you
must explicitly specify the dynamic
partition key column that you use to
create dynamic partitions.
If the partition field for dynamic
partitions is left empty and the value
of the ds field is null or '' ,
the output varies based on the Blink
version:

For Blink 3.2.1 and earlier, a
NullPointerException (NPE)
error is returned.
For Blink 3.2.2 and later, a
partition with ds=null is
created.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 163

flushInterval
Ms

The flush interval
for the buffer of a
writer in
MaxCompute
Tunnel. Unit:
milliseconds.
The MaxCompute
sink inserts data
into its buffer and
then writes the
data from the
buffer into the
destination
MaxCompute
table at an
interval specified
by the
flushIntervalMs
parameter or
when the buffer
overflows.

No

Default value: 30000. Unit: milliseconds.

Note
This parameter is available in Blink 3.6.0 and
later.

partitionBy

The columns
based on which
hash shuffling is
implemented.
Before data is
written to a sink
node, the system
implements hash
shuffling based
on the value of
this parameter.
This way, data
flows to the
related sink
nodes.

No

The system performs hash shuffling based on
multiple columns. The column names are
separated by commas (,). By default, this
parameter is empty.

Note
This parameter is available in Blink 3.6.0 and
later.

isOverwrite

Specifies whether
to clear the result
table before data
is written to a
sink node.

No

For versions earlier than Blink 3.2, the default
value is true.
For Blink 3.2 and later, the default value is
false. When you declare a MaxCompute result
table for a streaming job, you must set the
isOverwrite parameter to false. Otherwise, an
error is returned during compilation.

Note
For Blink 3.2 and later, you can change the
value of the isOverwrite parameter to true.
For Blink versions earlier than 3.2, if you want
to change the value of the isOverwrite
parameter, you must upgrade the Blink
version first.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

164 > Document Version: 20231114

dynamicPart
itionLimit

The maximum
number of
partitions.

No

The default value is 100. A map in the memory
maintains the mappings between the existing
partitions to which data is written and the Tunnel
service or the writer. If the map size exceeds the
value of the dynamicPartitionLimit parameter,
the system reports the following error: Too many
dynamic partitions: 100, which exceeds the
size limit: 100 .

Data type mappings

Data type of MaxCompute Data type of Realtime Compute for Apache
Flink

TINYINT TINYINT

SMALLINT SMALLINT

INT INT

BIGINT BIGINT

FLOAT FLOAT

DOUBLE DOUBLE

BOOLEAN BOOLEAN

DATETIME TIMESTAMP

TIMESTAMP TIMESTAMP

VARCHAR VARCHAR

STRING VARCHAR

DECIMAL DECIMAL

Sample code
The following sample code shows how to create a MaxCompute result table in a Realtime
Compute for Apache Flink job.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 165

Write data to a static partition

CREATE TABLE source (
 id INT,
 len INT,
 content VARCHAR
) with (
 type = 'random'
);

create table odps_sink (
 id INT,
 len INT,
 content VARCHAR
) with (
 type = 'odps',
 endPoint = '<yourEndpoint>',
 project = '<yourProjectName>',
 tableName = '<yourTableName>',
 accessId = '<yourAccessId>',
 accessKey = '<yourAccessPassword>',
 `partition` = 'ds=20180418'
);

INSERT INTO odps_sink
SELECT
 id, len, content
FROM source;

Write data to a dynamic partition

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

166 > Document Version: 20231114

CREATE TABLE source (
 id INT,
 len INT,
 content VARCHAR,
 c TIMESTAMP
) with (
 type = 'random'
);

create table odps_sink (
 id INT,
 len INT,
 content VARCHAR,
 ds VARCHAR --The partition key column that you use to create dynamic partitions mus
t be explicitly specified in the CREATE TABLE statement.
) with (
 type = 'odps',
 endPoint = '<yourEndpoint>',
 project = '<yourProjectName>',
 tableName = '<yourTableName>',
 accessId = '<yourAccessId>',
 accessKey = '<yourAccessPassword>',
 `partition`='ds' --The partition value is not provided. This means that data is wri
tten to different partitions based on the value of the ds field.
);

INSERT INTO odps_sink
SELECT
 id,
 len,
 content,
 DATE_FORMAT(c, 'yyMMdd') as ds
FROM source;

FAQ
Q: What do the endPoint and tunnelEndpoint parameters mean in the Alibaba Cloud public
cloud? What happens if the two parameters are incorrectly configured?
A: For more information about the endPoint and tunnelEndpoint parameters, see Endpoints.
If the configuration of these two parameters is incorrect in a VPC, one of the following task
exceptions may occur.

If the endPoint parameter is incorrectly configured, the task stops at a progress of 91%.
If the tunnelEndpoint parameter is incorrectly configured, the task fails.

Q: Does Realtime Compute for Apache Flink clear a MaxCompute result table before it
writes data to the result table in stream mode when isOverwrite is set to true?
A: Blink versions earlier than 3.2 support this feature. Blink 3.2 and later do not support this
feature.
If the isOverwrite parameter is set to true, Realtime Compute for Apache Flink clears a
MaxCompute result table before it writes data to the result table. Realtime Compute for
Apache Flink clears data from the existing result table or the result partition each time a
job is started or resumed, or before Realtime Compute for Apache Flink writes data to the
result table.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 167

https://www.alibabacloud.com/help/en/maxcompute/user-guide/endpoints

For Blink versions earlier than 3.2, the default value of isOverwrite is true and cannot
be changed. Data may be lost after a streaming job is suspended or resumed.
For Blink 3.2 and later, the default value of isOverwrite is false. If you declare a
MaxCompute result table for a streaming job, you must set the isOverwrite parameter
to false. Otherwise, an error is returned during compilation. MaxCompute result tables in
stream mode support the at-least-once data security mechanism. If a job fails, duplicate
data may be generated.

Q: What do I do if the error message "ErrorMessage=Authorization Failed [4019], You have
NO privilege'ODPS:***'" appears when a job is running?
A: This error occurs because the user identity information specified in the MaxCompute
DDL statements cannot be used to access MaxCompute. Therefore, you must use an
Alibaba Cloud account, a RAM user, or a RAM role to authenticate the user identity. For
more information, see User authentication.

This topic describes how to create an ApsaraDB for HBase result table in Realtime Compute
for Apache Flink.

Important
This topic applies only to Realtime Compute for Apache Flink in exclusive mode.
Blink versions earlier than 3.3.0 support only HBase Standard Edition.
Blink 3.3.0 and later versions support both HBase Standard Edition and HBase
Enhanced Edition.
Blink 3.5.0 and later versions support switchover between primary and secondary
ApsaraDB for HBase databases for data writing.
ApsaraDB for HBase result tables in Realtime Compute for Apache Flink do not
support self-managed open source HBase.

DDL syntax
In Realtime Compute for Apache Flink, you can use ApsaraDB for HBase to store output data.

The following sample code demonstrates how to create an ApsaraDB for HBase result table
of HBase Standard Edition:

create table liuxd_user_behavior_test_front (
 row_key varchar,
 from_topic varchar,
 origin_data varchar,
 record_create_time varchar,
 primary key (row_key)
) with (
 type = 'cloudhbase',
 zkQuorum = '2',
 columnFamily = '<yourColumnFamily>',
 tableName = '<yourTableName>',
 batchSize = '500'
);

The following sample code demonstrates how to create an ApsaraDB for HBase result table

5.6.3.10. Create an ApsaraDB for HBase result
table

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

168 > Document Version: 20231114

https://www.alibabacloud.com/help/en/maxcompute/user-guide/user-authentication

of HBase Enhanced Edition:

create table liuxd_user_behavior_test_front (
 row_key varchar,
 from_topic varchar,
 origin_data varchar,
 record_create_time varchar,
 primary key (row_key)
) with (
 type = 'cloudhbase',
 endPoint = '<host:port>', ----The Java API URL that is used to access the Enhance
d Edition of an ApsaraDB for HBase database.
 userName = 'root', -- The username that is used to access the ApsaraDB for HBase
database.
 password = 'root', --The password that is used to access the ApsaraDB for HBase d
atabase.
 columnFamily = '<yourColumnFamily>',
 tableName = '<yourTableName>',
 batchSize = '500'
);

The following sample code demonstrates how to create an ApsaraDB for HBase dimension
table of HBase Enhanced Edition in Blink 3.5.0 or later:

create table liuxd_user_behavior_test_front (
 row_key varchar,
 from_topic varchar,
 origin_data varchar,
 record_create_time varchar,
 primary key (row_key)
) with (
 type = 'cloudhbase',
 zkQuorum = '<host:port>', ----The Java API URL that is used to access the Enhance
d Edition of an ApsaraDB for HBase database.
 userName = 'root', --The username that is used to access the ApsaraDB for HBase
database.
 password = 'root', --The password that is used to access the ApsaraDB for HBase d
atabase.
 columnFamily = '<yourColumnFamily>',
 tableName = '<yourTableName>',
 batchSize = '500'
);

The following sample code demonstrates how to create an ApsaraDB for HBase dimension
table in Blink 3.5.0 or later that supports switchover between primary and secondary
ApsaraDB for HBase databases for data writing:

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 169

create table liuxd_user_behavior_test_front (
 row_key varchar,
 from_topic varchar,
 origin_data varchar,
 record_create_time varchar,
 primary key (row_key)
) with (
 type = 'cloudhbase',
 zkQuorum = '<host:port>', ---- The URL that is used to access ApsaraDB for HBase
databases in high availability (HA) mode.
 haClusterID = 'ha-xxx', ---- The instance ID of ApsaraDB for HBase databases in HA
mode.
 userName = 'root', --The username that is used to access the ApsaraDB for HBase
database.
 password = 'root', --The password that is used to access the ApsaraDB for HBase d
atabase.
 columnFamily = '<yourColumnFamily>',
 tableName = '<yourTableName>',
 batchSize = '500'
);

Note
You can define multiple fields for the primary key. Multiple fields are separated
with the value of rowkeyDelimiter . The default value is a colon (:).
When you undo the deletion operation in ApsaraDB for HBase, if a column stores
multiple versions of a value, all the versions of the value are deleted.
The connection parameters are different between ApsaraDB for HBase Standard
Edition and ApsaraDB for HBase Enhanced Edition.

In ApsaraDB for HBase Standard Edition, the connection parameter is
 zkQuorum .
In ApsaraDB for HBase Enhanced Edition, the connection parameter is
 endPoint .

Parameters in the WITH clause
Paramet
er Description Require

d Remarks

type The type of the result
table. Yes Set the value to cloudhbase.

zkQuoru
m

The ZooKeeper
address that is
configured for the
ApsaraDB for HBase
cluster.

Yes

You can view the configuration related to
hbase.zookeeper.quorum in the hbase-site.xml
file.

Note This parameter takes effect in
only ApsaraDB for HBase Standard Edition.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

170 > Document Version: 20231114

zkNodeP
arent

The path of the cluster
configured on the
ZooKeeper servers.

No

You can view the relevant configurations of
hbase.zookeeper.quorum in the hbase-site.xml
file.

Note This parameter takes effect
only in ApsaraDB for HBase Standard Edition.

endPoint
The name of the
region where your
ApsaraDB for HBase
instance is deployed.

Yes

You can obtain the value of this parameter from
the console of your ApsaraDB for HBase instance.

Note This parameter takes effect
only in ApsaraDB for HBase Enhanced
Edition.

userNam
e

The username that is
used to access an
ApsaraDB for HBase
database.

No This parameter takes effect only in ApsaraDB for
HBase Enhanced Edition.

password
The password that is
used to access an
ApsaraDB for HBase
database.

No This parameter takes effect only in ApsaraDB for
HBase Enhanced Edition.

tableNam
e

The name of the
ApsaraDB for HBase
table.

Yes None.

columnFa
mily

The name of the
column family. Yes Only the same column family can be inserted.

maxRetry
Times

The maximum number
of retries. No

Default value: 10.

Note This parameter is available only
in Realtime Compute for Apache Flink V3.2.3
and later.

bufferSiz
e

The maximum number
of data records that
can be stored in the
buffer before
deduplication is
triggered.

No Default value: 5000.

batchSize
The number of data
records that can be
written at a time.

No

Default value: 100.

Note We recommend that you set
this parameter to a value that ranges from
200 to 300. A large value of batchSize may
cause an out-of-memory (OOM) error for the
task.

flushInter
valMs

The interval at which
the buffer is cleared to
reduce the latency of
writing data into
ApsaraDB for HBase.

No Default value: 2000. Unit: milliseconds.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 171

writePkV
alue

Specifies whether to
write the primary key
value.

No Default value: false.

stringWri
teMod

Specifies whether to
insert data as the
STRING type.

No Default value: false.

rowkeyD
elimiter

The delimiter of
rowKey. No The default delimiter is a colon (:).

isDynami
cTable

Specifies whether the
table is a dynamic
table.

No Default value: false.

haClusts
erID

The ID of an ApsaraDB
for HBase instance in
HA mode.

No This parameter is required only when you access
zone-disaster recovery instances.

Dynamic table
Some result data of Realtime Compute for Apache Flink is used as a dynamic column based
on the value of a column and written to ApsaraDB for HBase. In the following example, the
turnover per hour is used as a dynamic column data in ApsaraDB for HBase.

rowkey cf:0 cf:1 cf:2

20170707 100 cf:1 300

If isDynamicTable is set to true, the table is an ApsaraDB for HBase table that supports
dynamic columns.
A dynamic table can contain only three columns, such as ROW_KEY, COLUMN, and VALUE.
The second column that is COLUMN in this example is a dynamic column. Other parameters
in the dynamic table are the same as those in the WITH clause of ApsaraDB for HBase.

Note When a dynamic table is used, all data types must be converted to the
STRING type before data is written into ApsaraDB for HBase.

CREATE TABLE stream_test_hotline_agent (
 name varchar,
 age varchar,
 birthday varchar,
 primary key (name)
) WITH (
 type = 'cloudhbase',
 ...
 columnFamily = 'cf',
 isDynamicTable ='true'
);

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

172 > Document Version: 20231114

Note
In the preceding declaration, birthday is inserted into the cf:age column with
ROW_KEY of name . For example, (wang,18,2016-12-12) is inserted into the row
for which the ROW_KEY value is wang and the cf:18 column.
In the DDL statement, you must declare ROW_KEY as the primary key and declare
the following fields in the descending order: ROW_KEY, COLUMN, and VALUE. In this
example, ROW_KEY is name , COLUMN is age , and VALUE is birthday .

Sample code
The following sample code demonstrates how to create an ApsaraDB for HBase result table in
a Realtime Compute for Apache Flink job:
create table source (
 id TINYINT,
 name BIGINT
) with (
 type = 'random'
);

create table sink (
 id TINYINT,
 name BIGINT,
 primary key (id)
) with (
 type = 'cloudhbase',
 zkQuorum = '<yourZkQuorum>',
 columnFamily = '<yourColumnFamily>',
 tableName = '<yourTableName>'
);

INSERT INTO sink
SELECT id, name FROM source;

FAQ
Why is the error cloudHbase update error, No columns to insert for #10 item reported
when a job for an ApsaraDB for HBase result table is running?
The column data for a single record that is written into the ApsaraDB for HBase result table
cannot all be null. The column data excludes ROW_KEY. Before you use Realtime Compute for
Apache Flink to write data into the ApsaraDB for HBase result table, filter out all null data.

This topic describes how to create an Elasticsearch result table in Realtime Compute for
Apache Flink. This topic also describes the parameters in the WITH clause used when you
create an Elasticsearch result table.

Important This topic applies only to Blink 3.2.2 and later.

DDL syntax

5.6.3.11. Create an Elasticsearch result table

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 173

In Realtime Compute for Apache Flink, you can use Elasticsearch to store output data. The
following sample code shows how to create an Elasticsearch result table.
 CREATE TABLE es_stream_sink(
 field1 LONG,
 field2 VARBINARY,
 field3 VARCHAR,
 PRIMARY KEY(field1)
)WITH(
 type ='elasticsearch',
 endPoint = 'http://es-cn-mp****.public.elasticsearch.aliyuncs.com:****',
 accessId = '<yourUsername>',
 accessKey = '<yourPassword>',
 index = '<yourIndex>',
 typeName = '<yourTypeName>'
);

Note
Elasticsearch supports data updates based on the PRIMARY KEY field. You can use
only one field as the PRIMARY KEY field.
If you specify the PRIMARY KEY field, values in the field are used as document IDs.
If you do not specify the PRIMARY KEY field, document IDs are randomly generated.
For more information, see Index API.
In full update mode, later documents overwrite earlier documents.
In incremental update mode, the system updates the fields based on the field
values you entered.
By default, all updates use the UPSERT syntax, which means to insert or update
data.

Parameters in the WITH clause (general configurations)
Parameter Description Required Default value

type The type of the connector. Yes elasticsearch

endPoint The endpoint of an Elasticsearch
cluster, such as http://127.0.0.1:9211. Yes N/A

accessId

The AccessKey ID that is used to
access the Elasticsearch cluster.

Note If you use the Kibana
plug-in to access the Elasticsearch
cluster, enter the Kibana logon ID.

Yes N/A

accessKey

The AccessKey secret that is used to
access the Elasticsearch cluster.

Note If you use the Kibana
plug-in to access the Elasticsearch
cluster, enter the Kibana logon
password.

Yes N/A

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

174 > Document Version: 20231114

https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-index_.html

index The name of the index. Yes N/A

typeName The type of a document. Yes _doc

bufferSize
The maximum number of data records
that can be stored in the buffer before
data is deduplicated.

No 1000

maxRetryTimes The maximum number of retries for
writing data to a table. No 30

timeout The read timeout period. Unit:
milliseconds. No 600000

discovery
Specifies whether node discovery is
enabled. If this feature is enabled, the
client refreshes the server list every 5
minutes.

No false

compression Specifies whether to compress request
bodies in the gzip format. No true

multiThread Specifies whether to enable
multithreading for JestClient. No true

ignoreWriteError Specifies whether to ignore write
exceptions. No false

settings The settings used to create indexes. No N/A

updateMode

The update mode used after the
primary key is specified.

full: Full data is overwritten.
inc: Incremental data is added.

No full

Parameters in the WITH clause (dynamic indexing)
Parameter Description Required Remarks

dynamicIndex Specifies whether to enable
dynamic indexing. No

Valid values:
true: Dynamic indexing is
enabled.
false: Dynamic indexing is
disabled. This is the default
value.

indexField The field name of the index.

This
parameter is
required if the
dynamicInd
ex parameter
is set to true.

Only the TIMESTAMP (in
seconds), DATE, and LONG
data types are supported.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 175

indexInterval The interval at which an index
is changed.

This
parameter is
required if the
dynamicInd
ex parameter
is set to true.

Valid values:
d: one day. This is the
default value.
m: one month.
w: one week.

mapping

The mappings between the
types and formats of fields in a
document configured when
dynamic indexing is enabled.
The following example shows
how to set the mapping
between the type and format of
the sendTime field:
{
 "properties": {
 "sendTime": {
 "type": "date",
 "format": "yyyy-MM-dd
HH:mm:ss"
 }
 }
}

No

This parameter is empty by
default.

Note
Blink 3.7.0 and
later support this
parameter.
Elasticsearch V7.0
does not support
this parameter.

Note
Only Blink 2.2.7 and later support the dynamic indexing feature.
After dynamic indexing is enabled, the index name in the basic configuration is
used as the unified alias for indexes created subsequently. An alias can correspond
to multiple indexes.
Actual index names that correspond to different values of indexInterval :

d -> Alias "yyyyMMdd"
m -> Alias "yyyyMM"
w -> Alias "yyyyMMW"

You can use Index API to change a single actual index, but the alias supports only
the GET method. For more information about how to change the alias, see Index
Aliases.

Sample code
The following sample code shows how to create a dynamic index.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

176 > Document Version: 20231114

https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-aliases.html

CREATE TABLE es_stream_sink(
 field1 LONG,
 field2 VARBINARY,
 field3 TIMESTAMP,
 PRIMARY KEY(field1)
)WITH(
 type ='elasticsearch',
 endPoint = 'http://es-cn-mp****.public.elasticsearch.aliyuncs.com:****',
 accessId = '<yourAccessId>',
 accessKey = '<yourAccessSecret>',
 index = '<yourIndex>',
 typeName = '<yourTypeName>',
 dynamicIndex = 'true',
 indexField = 'field3',
 indexInterval = 'd'
);

This topic describes how to create a Time Series Database (TSDB) result table in Realtime
Compute for Apache Flink. It also describes the parameters in the WITH clause that is used
when you create a TSDB result table.

Important
This topic applies only to Blink 2.0 and later.
To reference a TSDB result table in Realtime Compute for Apache Flink, you must
configure a whitelist that controls access to storage resources. For more
information, see Configure a whitelist for accessing storage resources.

Introduction to TSDB
Alibaba Cloud TSDB is a database service that supports efficient reads and writes,
compressed storage, and real-time computing for time series data. TSDB is widely used in
Internet of Things (IoT) and Internet fields to implement real-time monitoring, forecasting,
and alerting on devices and services.

DDL syntax
In Realtime Compute for Apache Flink, you can use TSDB to store output data. The following
code shows an example:

5.6.3.12. Create a TSDB result table

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 177

CREATE TABLE stream_test_hitsdb (
 metric VARCHAR,
 `timestamp` INTEGER,
 `value` DOUBLE,
 tagk1 VARCHAR,
 tagk2 VARCHAR,
 tagk3 VARCHAR
) WITH (
 type='hitsdb',
 host='<yourHostName>',
 virtualDomainSwitch = 'false',
 httpConnectionPool = '20',
 batchPutSize = '1000'
);

Default format for tables:
Column 0: metric (VARCHAR).
Column 1: timestamp (INTEGER). Unit: seconds.
Column 2: value (DOUBLE).
Columns 3 to N: tag keys. The field names in the time series database are used as the tag
keys.

Note
You can specify multiple tag columns.
You must declare the following fields: metric, timestamp, and value. The names,
sequence, and data types of the fields must be the same as those in TSDB.
For more information about parameter settings,see Write data.

Parameters in the WITH clause
Parameter Description Remarks

type The type of the
result table. Set the value to hitsdb .

host

The IP address
or the domain
name that is
mapped to the
virtual IP
address (VIP) of
the TSDB
instance.

Enter the hostname of the TSDB instance. For more
information, see Connect to the instance.

port
The port number
that is used to
access the TSDB
instance.

Default value: 8242.

virtualDomainSwitch
Specifies
whether to use
VIPServer.

Default value: false. If you need to use VIPServer, set this
parameter to true.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

178 > Document Version: 20231114

https://www.alibabacloud.com/help/doc-detail/59939.htm
https://www.alibabacloud.com/help/doc-detail/56240.htm

httpConnectionPool

The maximum
number of
connections in
an HTTP
connection pool.

Default value: 10.

httpCompress
Specifies
whether to use
GZIP
compression.

Default value: false. This value indicates that GZIP
compression is not used.

httpConnectTimeout
The timeout
period for an
HTTP
connection.

Default value: 0.

ioThreadCount The number of
I/O threads. Default value: 1.

batchPutBufferSize The buffer size. Default value: 10000.

batchPutRetryCount

The maximum
number of
retries for
writing data to
the result table.

Default value: 3.

batchPutSize

The maximum
number of data
records that can
be submitted at
a time.

Default value: 500.

batchPutTimeLimit

The maximum
duration for
which a data
record can be
stored in the
buffer.

Default value: 200. Unit: milliseconds.

batchPutConsumerT
hreadCount

The number of
serialized
threads.

Default value: 1.

Models for writing data from Realtime Compute for Apache
Flink to TSDB
In Blink 3.2 and later, Realtime Compute for Apache Flink can write data to TSDB by using
one of the following models:

Write single-value data points where no tags are included. To use this model, use the
specified schema that consists of three fields. The names of these fields cannot be
changed. You must use the following schema format for this model:

metric,timestamp,value

Write single-value data points where tags are included. To use this model, use the specified
schema. In the schema, the names of the following fields cannot be changed: metric,
timestamp, and value. You can specify the tag names based on your business
requirements. You must use the following schema format for this model:

metric,timestamp,value,tagKey1,....,tagKeyN

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 179

Write single-value data points where the number of tags is unknown. To use this model, use
the specified schema that consists of four fields. The names of the four fields cannot be
changed. You must use the following schema format for this model:

metric,timestamp,value,tags

In the schema, specify the value of the tags parameter as a JSON string. The JSON string
allows you to specify an unknown number of tags. If you do not use the JSON string, you
must specify a fixed number of tags for the Blink table schema. In the schema, specify the
JSON string in the following format:

{"tagKey1":"tagValue1","tagKey2":"tagValue2",……,"tagKeyN":"tagValueN"}

Write multi-value data points where tags are not included. You must use the following
schema format for this model:

metric,timestamp,field_name1,field_name2,……,field_nameN

The names of the metric and timestamp fields cannot be changed. For multi-value fields,
the field_ prefix is used for each field to distinguish fields from tags and to support single-
value data writes. For example, when the field_name1 field is written to TSDB, the prefix
 field_ is automatically removed. In the preceding schema, name1 and name2 are the
names of the multi-value fields. For the preceding schema, the following format is used to
write data to TSDB:

metric,timestamp,name1,name2,……,nameN

Write multi-value data points where tags are included. To use this model, use the specified
schema. In the schema, the names of the following fields cannot be changed: metric and
timestamp. You can specify the tag names based on your business requirements. You must
use the following schema format for this model:

metric,timestamp,tagKey1,....,tagKeyN,field_name1,field_name2,……,field_nameN

Write single-value data points where the number of tags is unknown. You must use the
following schema format for this model:

metric,timestamp,tags,field_name1,field_name2,……,field_nameN

The content of tags is a JSON string shown in the following example. Therefore, the limit
that the Blink table schema requires a fixed number of tags does not apply.

{"tagKey1":"tagValue1","tagKey2":"tagValue2",……,"tagKeyN":"tagValueN"}

FAQ
Q: Why does the following error occur during a failover "The values of the LONG data type
cannot be converted into the values of the INT data type"?
A: Blink versions earlier than 2.2.5 support only the INT data type. Blink 2.2.5 and later
support the BIGINT data type.

This topic describes how to create a Message Queue for Apache Kafka result table in
Realtime Compute for Apache Flink. It also describes the mapping between the values of the
type parameter and Kafka versions.

5.6.3.13. Create a Message Queue for Apache
Kafka result table

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

180 > Document Version: 20231114

Important
This topic applies only to Realtime Compute for Apache Flink V2.0 and later.
This topic applies only to Realtime Compute for Apache Flink in exclusive mode.
Data of a Message Queue for Apache Kafka result table can be written into a self-
managed Kafka cluster. Before data is written, you must pay attention to the
mapping between the values of the type parameter and Kafka versions, and the
network configurations of the self-managed Kafka cluster and the Realtime
Compute for Apache Flink cluster.

Introduction to the Message Queue for Apache Kafka result
table
Message Queue for Apache Kafka is a distributed, high-throughput, and scalable message
queue service provided by Alibaba Cloud. This service is widely used in big data fields, such
as log collection, monitoring data aggregation, streaming data processing, and online and
offline data analysis. Realtime Compute for Apache Flink allows you to create source tables
and result tables of Message Queue for Apache Kafka for the processing of streaming data.

DDL syntax
The following example demonstrates how to create a Message Queue for Apache Kafka result
table in a data definition language (DDL) statement.
create table sink_kafka (
 messageKey VARBINARY,
 `message` VARBINARY,
 PRIMARY KEY (messageKey)
) with (
 type = 'kafka010',
 topic = '<yourTopicName>',
 bootstrap.servers = '<yourServerAddress>'
);

Note
When you create a Message Queue for Apache Kafka result table, you must specify
 PRIMARY KEY (messageKey) in plaintext mode.
Only Blink 2.2.6 and later versions support the display of metrics such as
transactions per second (TPS) and requests per second (RPS) of Alibaba Cloud
Message Queue for Apache Kafka or a self-managed Kafka database.

Parameters in the WITH clause
General configurations

Parameter Description Required Remarks

type The Kafka
version. Yes

Valid values: Kafka08, Kafka09, Kafka010, and
Kafka011. For more information, see Mapping
between the values of the type parameter and
Kafka versions.

topic The name of
the topic. Yes None.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 181

Required configurations
Required configurations for Kafka08

Parameter Description

zookeeper.connect The ZooKeeper URL.

Required configurations for Kafka09, Kafka010, and Kafka011

Parameter Description

bootstrap.servers The Kafka cluster address.

Optional configurations
 consumer.id
 socket.timeout.ms
 fetch.message.max.bytes
 num.consumer.fetchers
 auto.commit.enable
 auto.commit.interval.ms
 queued.max.message.chunks
 rebalance.max.retries
 fetch.min.bytes
 fetch.wait.max.ms
 rebalance.backoff.ms
 refresh.leader.backoff.ms
 auto.offset.reset
 consumer.timeout.ms
 exclude.internal.topics
 partition.assignment.strategy
 client.id
 zookeeper.session.timeout.ms
 zookeeper.connection.timeout.ms
 zookeeper.sync.time.ms
 offsets.storage
 offsets.channel.backoff.ms
 offsets.channel.socket.timeout.ms
 offsets.commit.max.retries
 dual.commit.enabled
 partition.assignment.strategy
 socket.receive.buffer.bytes
 fetch.min.bytes

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

182 > Document Version: 20231114

Note For more information about optional configuration items, see the following
official Kafka documentation:

Kafka09
Kafka010
Kafka011

Mapping between the values of the type parameter and Kafka
versions

type Kafka version

Kafka08 0.8.22

Kafka09 0.9.0.1

Kafka010 0.10.2.1

Kafka011 0.11.0.2 and later

Example
create table datahub_input (
 id VARCHAR,
 nm VARCHAR
) with (
 type = 'datahub'
);

create table sink_kafka (
 messageKey VARBINARY,
 `message` VARBINARY,
 PRIMARY KEY (messageKey)
) with (
 type = 'kafka010',
 topic = '<yourTopicName>',
 bootstrap.servers = '<yourServerAddress>'
);

INSERT INTO
 sink_kafka
SELECT
cast(id as VARBINARY) as messageKey,
 cast(nm as VARBINARY) as `message`
FROM
 datahub_input;

This topic describes how to create a HybridDB for MySQL result table in Realtime Compute for
Apache Flink. It also describes the parameters in the WITH clause used when you create such
a result table.

5.6.3.14. Create a HybridDB for MySQL result table

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 183

https://kafka.apache.org/0110/documentation.html#consumerconfigs
https://kafka.apache.org/090/documentation.html#newconsumerconfigs
https://kafka.apache.org/0102/documentation.html#newconsumerconfigs

Important
HybridDB for MySQL is no longer available.
This topic applies only to Blink 1.4.5 and later.

Introduction to HybridDB for MySQL
HybridDB for MySQL (formerly known as PetaData) is a hybrid transaction/analytical
processing (HTAP) relational database that supports both online transaction processing
(OLTP) and online analytical processing (OLAP). HybridDB for MySQL uses the same data
store for OLTP and OLAP. This prevents data replications during data analysis and
significantly reduces data storage costs.

DDL syntax
In Realtime Compute for Apache Flink, you can use HybridDB for MySQL to store output data.
The following code shows an example:

create table petadata_output(
 id INT,
 len INT,
 content VARCHAR,
 primary key(id,len)
) with (
 type='petaData',
 url='yourDatabaseURL',
 tableName='yourTableName',
 userName='yourDatabaseUserName',
 password='yourDatabasePassword'
);

Note
In Realtime Compute for Apache Flink, each row of output data is converted to a
line of SQL statement and then written and executed in the destination database.
The default value of the bufferSize parameter is 1000. If the number of data
records reaches the value of this parameter, data is written into the result table. If
you specify the batchSize parameter, you must also specify the bufferSize
parameter. You can set the two parameters to the same value.
We recommend that you set the batchSize parameter to 4096. Do not set it to a
large value.

Parameters in the WITH clause

Parameter Description Required Remarks

type The type of the result table. Yes Set the value to petaData.

url The URL that is used to
access the database. Yes Switch network type.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

184 > Document Version: 20231114

https://www.alibabacloud.com/help/en/hybriddb-for-mysql/latest/69a419

tableName The name of the table. Yes None.

userName The username that is used
to access the database. Yes None.

password
The password that is used
to access the database. Yes None.

maxRetryTimes
The maximum number of
retries for writing data to
the table.

No Default value: 3.

batchSize
The number of data records
that can be written at a
time.

No Default value: 1000.

bufferSize
The maximum number of
data records that can be
stored in the buffer before
deduplication is triggered.

No None.

flushIntervalMs The timeout period for
writing data. No

Unit: milliseconds. Default
value: 3000. This value
indicates that if the number
of input data records does
not reach the value
specified by the bufferSize
parameter within 3,000
milliseconds, all cached
data is written into the
result table.

ignoreDelete Specifies whether to skip
delete operations. No Default value: false.

This topic describes how to create an ApsaraDB RDS for SQL Server result table in Realtime
Compute for Apache Flink. This topic also describes the parameters in the WITH clause, data
type mappings, and Java Database Connectivity (JDBC) parameters that are used when you
create such a result table.

5.6.3.15. Create an ApsaraDB RDS for SQL Server
result table

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 185

Important
This topic applies only to Blink V3.2.0 and later.
Realtime Compute for Apache Flink cannot use ApsaraDB RDS for SQL Server as a
data store.

DDL syntax
In Realtime Compute for Apache Flink, you can use ApsaraDB RDS for SQL Server to store
output data. The following code shows an example:

create table ss_output(
 id INT,
 len INT,
 content VARCHAR,
 primary key(id,len)
) with (
 type='jdbc',
 url='jdbc:sqlserver://ip:port;database=****',
 tableName='<yourDatabaseTableName>',
 userName='<yourDatabaseUserName>',
 password='<yourDatabasePassword>'
);

Note
In Realtime Compute for Apache Flink, each row of output data is converted to a
line of SQL statement and then written and executed in the destination database. If
you want to write multiple rows of data to the result table at the same time, you
must add ?rewriteBatchedStatements=true to the URL to improve system
performance.
You can define an auto-increment primary key for an ApsaraDB RDS for SQL Server
database. If you want to use the auto-increment primary key, do not declare the
auto-increment field in the DDL statement. For example, if you use the ID field as
an auto-increment field, do not declare the ID field in the DDL statement. When a
row of output data is written into an ApsaraDB RDS for SQL Server database, a
value is automatically filled for the auto-increment field.
If a DRDS result table has partitions, the shard key must be declared in primary
key() of the DDL statement. Otherwise, you cannot write data into the partitioned
table.
The fields that are declared in a DDL statement must include at least one non-
primary key field. Otherwise, an error is returned.

Parameters in the WITH clause

Parameter Description Required Remarks

url
The JDBC
URL of the
database.

Yes
For more information, see View and change the
internal and public endpoints and port numbers
of an ApsaraDB RDS for MySQL instance.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

186 > Document Version: 20231114

https://www.alibabacloud.com/help/en/rds/apsaradb-rds-for-mysql/view-and-change-the-internal-and-public-endpoints-and-port-numbers-of-an-apsaradb-rds-for-mysql-instance#50e26550728ft

tableName The name of
the table. Yes N/A.

username

The
username
that is used
to access the
database.

Yes N/A.

password

The
password
that is used
to access the
database.

Yes N/A.

maxRetryTimes

The
maximum
number of
retries for
writing data
to the table.

No Default value: 10.

bufferSize

The
maximum
number of
data records
that can be
stored in the
buffer before
data
deduplication
is triggered.

No
Default value: 10000. This value indicates that
deduplication is triggered after the number of
input data records reaches 10,000.

flushIntervalMs
The interval
at which the
cache is
cleared.

No

Unit: milliseconds. Default value: 2000. This
value indicates that if the number of input data
records does not reach the value specified by
the bufferSize parameter within 2,000
milliseconds, all cached data is written into the
result table.

excludeUpdateC
olumns

Specifies
whether to
ignore the
update of the
specified
field.

No

This parameter is optional. This parameter is
empty by default, which indicates that the
primary key field is ignored by default. When
data with the same primary key is updated, the
specified columns are not updated.

ignoreDelete
Specifies
whether to
ignore delete
operations.

No Default value: False.

Data type mappings

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 187

Data type of ApsaraDB RDS for SQL Server Data type of Realtime Compute for Apache
Flink

BOOLEAN BOOLEAN

TINYINT TINYINT

SMALLINT SMALLINT

INT INT

BIGINT BIGINT

FLOAT FLOAT

DECIMAL DECIMAL

DOUBLE DOUBLE

DATE DATE

TIME TIME

TIMESTAMP TIMESTAMP

VARCHAR VARCHAR

VARBINARY VARBINARY

JDBC parameters

Parameter Description Default value Since version (JDBC
driver)

useUnicode

Specifies whether to
use the Unicode
character set. This
parameter must be set
to True if you set the
characterEncoding
parameter to GB2312
or GBK.

False 1.1g

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

188 > Document Version: 20231114

characterEncoding

The character
encoding format, such
as GB2312 or GBK. If
useUnicode is set to
true, you must specify
a character encoding
format.

False 1.1g

autoReconnect

Specifies whether to
automatically re-
establish a connection
when the connection
to the database is
unexpectedly
interrupted.

False 1.1

autoReconnectForPool
s

Specifies whether to
use the reconnection
policy for a database
connection pool.

False 3.1.3

failOverReadOnly

Specifies whether the
database is read-only
after it is
automatically
reconnected.

True 3.0.12

maxReconnects

The maximum number
of reconnection
attempts allowed. This
parameter must be set
if the autoReconnect
parameter is set to
True.

3 1.1

initialTimeout

The interval between
two reconnection
attempts. Unit:
seconds. This
parameter must be set
if the autoReconnect
parameter is set to
True.

2 1.1

connectTimeout

The timeout period
when you use a socket
connection to access
the database server.
Unit: milliseconds.

Default value: 0. This
value indicates that
the connection never
times out. This
parameter is provided
in JDK V1.4 and later.

3.0.1

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 189

socketTimeout

The timeout period for
read and write
operations on a socket
connection. Unit:
milliseconds.

Default value: 0. This
value indicates that
the read or write
operation never times
out.

3.0.1

Sample code
The following example describes how to create an ApsaraDB RDS for SQL Server result table
in a Realtime Compute for Apache Flink job.

CREATE TABLE source (
 id INT,
 len INT,
 content VARCHAR
) with (
 type = 'random'
);

CREATE TABLE rds_output(
 id INT,
 len INT,
 content VARCHAR,
 PRIMARY KEY (id,len)
) WITH (
 type='jdbc',
 url='<yourDatabaseURL>',
 tableName='<yourDatabaseTable>',
 userName='<yourDatabaseUserName>',
 password='<yourDatabasePassword>'
);

INSERT INTO rds_output
SELECT id, len, content FROM source;

FAQ
Q: When the output data of Realtime Compute for Apache Flink is written to an ApsaraDB
RDS for SQL Server table, is the result table updated based on the primary key or is a new
data record generated in the table?
A: The processing method depends on whether the primary key is defined in the DDL
statement.

If a primary key is defined in the DDL statement, the result table is updated by using
 insert into on duplicate key update . For a data record, if the primary key does not
exist, the record is inserted into the table as a new row. If the value of the primary key
field exists, the original row in the table is updated.
If no primary key is defined in the DDL statement, new data records are appended to the
table by using insert into .

Q: What do I need to pay attention to when I perform GROUP BY operations based on the
unique index of an ApsaraDB RDS for SQL Server table?
A: Pay attention to the following points:

Declare the unique index in the primary key of your job.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

190 > Document Version: 20231114

An ApsaraDB RDS for SQL Server table has only one auto-increment primary key.
Therefore, this auto-increment primary key cannot be declared as the primary key in a
Realtime Compute for Apache Flink job.

This topic describes how to create an ApsaraDB for Redis result table in Realtime Compute
for Apache Flink. This topic also describes the parameters in the WITH clause, the mappings
between the field data types of ApsaraDB for Redis and Realtime Compute for Apache Flink,
and the attribute fields used when you create an ApsaraDB for Redis result table.

Important
This topic applies only to Blink V3.2.0 and later.
Realtime Compute for Apache Flink allows you to use self-managed Redis
databases to store output data in result tables.

Introduction to ApsaraDB for Redis
ApsaraDB for Redis is a database service that is compatible with the protocols of the open
source Redis system. It supports a hybrid of memory and hard disks for storage. ApsaraDB for
Redis provides a hot standby architecture to ensure high availability. Based on the scalable
cluster architecture, ApsaraDB for Redis can meet the business requirements for high
throughputs, low-latency operations, and flexible configuration changes. Realtime Compute
for Apache Flink allows you to store the output streaming data in ApsaraDB for Redis.

Syntax
You can use five data types when you write data to ApsaraDB for Redis result tables. To
create an ApsaraDB for Redis result table, execute the following data definition language
(DDL) statements:

STRING type
A DDL statement has two columns. The first column lists keys and the second column lists
values. To insert data into an ApsaraDB for Redis result table, run the set key value
command.

create table resik_output (
 a varchar,
 b varchar,
 primary key(a)
) with (
 type = 'redis',
 mode = 'string',
 host = '${redisHost}', -- An example value is '127.0.0.1'.
 port = '${redisPort}', -- An example value is '6379'.
 dbNum = '${dbNum}', -- The default value is 0.
 ignoreDelete = 'true' -- Specifies whether to delete the previously inserted data w
hen the retraction message is returned. The default value is false.
);

LIST type
A DDL statement has two columns. The first column lists keys and the second column lists
values. To insert data into an ApsaraDB for Redis result table, run the lpush key value
command.

5.6.3.16. Create an ApsaraDB for Redis result table

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 191

create table resik_output (
 a varchar,
 b varchar,
 primary key(a)
) with (
 type = 'redis',
 mode = 'list',
 host = '${redisHost}', -- An example value is '127.0.0.1'.
 port = '${redisPort}', -- An example value is '6379'.
 dbNum = '${dbNum}', -- The default value is 0.
 ignoreDelete = 'true' -- Specifies whether to delete the previously inserted data w
hen the retraction message is returned. The default value is false.
);

SET type
A DDL statement has two columns. The first column lists keys and the second column lists
values. To insert data into an ApsaraDB for Redis result table, run the sadd key value
command.

create table resik_output (
 a varchar,
 b varchar,
 primary key(a)
) with (
 type = 'redis',
 mode = 'set',
 host = '${redisHost}', -- An example value is '127.0.0.1'.
 port = '${redisPort}', -- An example value is '6379'.
 dbNum = '${dbNum}', -- The default value is 0.
 ignoreDelete = 'true' -- Specifies whether to delete the previously inserted data w
hen the retraction message is returned. The default value is false.
);

HASHMAP type
A DDL statement has three columns. The first column lists keys, the second column lists
hash keys, and the third column lists hash values. To insert data into an ApsaraDB for Redis
result table, run the hmset key hash_key hash_value command.

create table resik_output (
 a varchar,
 b varchar,
 c varchar,
 primary key(a)
) with (
 type = 'redis',
 mode = 'hashmap',
 host = '${redisHost}', -- An example value is '127.0.0.1'.
 port = '${redisPort}', -- An example value is '6379'.
 dbNum = '${dbNum}', -- The default value is 0.
 ignoreDelete = 'true' -- Specifies whether to delete the previously inserted data w
hen the retraction message is returned. The default value is false.
);

SORTEDSET type
A DDL statement has three columns. The first column lists keys, the second column lists

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

192 > Document Version: 20231114

scores, and the third column lists values. To insert data into an ApsaraDB for Redis result
table, run the add key score value command.

create table resik_output (
 a varchar,
 b double, -- The data must be of the DOUBLE type.
 c varchar,
 primary key(a)
) with (
 type = 'redis',
 mode = 'sortedset',
 host = '${redisHost}', -- An example value is '127.0.0.1'.
 port = '${redisPort}', -- An example value is '6379'.
 dbNum = '${dbNum}', -- The default value is 0.
 ignoreDelete = 'true' -- Specifies whether to delete the previously inserted data w
hen the retraction message is returned. The default value is false.
);

Parameters in the WITH clause
Parameter Description Required Valid value

type The type of the
result table.

Yes

Set the value to redis .

mode
The data type of
the ApsaraDB for
Redis result
table.

Valid values:
string
list
set
hashmap
sortedset

host
The endpoint of
the ApsaraDB for
Redis database.

Example: 127.0.0.1 .

port
The port of the
ApsaraDB for
Redis database.

No

Default value: 6379.

dbNum
The sequence
number of the
ApsaraDB for
Redis database.

Default value: 0.

ignoreDelete

Specifies
whether to
ignore the
retraction
message.

Valid values: true and false. Default
value: false. If this parameter is set to
false, the inserted data and the keys
of the data are deleted when a
retraction message is received.

password

The password
that is used to
access the
ApsaraDB for
Redis database.

This parameter is empty by default.
This indicates that permission
verification is not required.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 193

clusterMode

Specifies
whether the
ApsaraDB for
Redis database is
in cluster mode.

Valid values:
true: cluster mode.
false: standalone mode. This is the
default value.

Note Only Blink 3.6.X and
later support this parameter.

Field type mapping
The following table lists the data type mappings between ApsaraDB for Redis and Realtime
Compute for Apache Flink. We recommend that you declare the mappings in DDL statements.

Data type of ApsaraDB for Redis Data type of Realtime Compute for Apache
Flink

STRING VARCHAR

SCORE DOUBLE

Note The data of the SCORE type is added to the values of the SORTEDSET data
type in ApsaraDB for Redis databases. You must manually set a score of the DOUBLE type
for each sorted set value and sort the values based on their scores in ascending order.

Sample code
The following sample code shows how to create an ApsaraDB for Redis result table in a
Realtime Compute for Apache Flink job.
CREATE TABLE random_stream (
 v VARCHAR,
 p VARCHAR) with (
 type = 'random'
);

create table resik_output (
 a VARCHAR,
 b VARCHAR,
 primary key(a)
) with (
 type = 'redis',
 mode = 'string',
 host = '<yourRedisHost>',
 password = '<yourRedisPassword>'
);

INSERT INTO resik_output
SELECT v, p
FROM random_stream;

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

194 > Document Version: 20231114

This topic describes how to create an ApsaraDB for MongoDB result table in Realtime
Compute for Apache Flink. This parameter also describes the parameters in the WITH clause
that is used when you create an ApsaraDB for MongoDB result table.

Important
This topic applies to only Blink V3.2.2 and later.
You cannot update the primary key in an ApsaraDB for MongoDB result table. As a
result, data that has the same primary key is inserted repeatedly into the table.

Syntax
In Realtime Compute for Apache Flink, you can use ApsaraDB for MongoDB to store output
data. To create an ApsaraDB for MongoDB result table, you can use the following sample
code:
CREATE TABLE mongodb_sink (
 `a` VARCHAR
) WITH (
 type = 'mongodb',
 database = '<yourDatabaseName>',
 collection= '<yourCollectionName>',
 uri='mongodb://{<databaseAccount>}:{<atabasePassword>}@{host}:****?
replicaSet=mgset-1224****',
 keepAlive='true',
 maxConnectionIdleTime='20000',
 batchSize='2000'
);

Parameters in the WITH clause
Parameter Description Required Remarks

type The type of the
connector. Yes Set the value to mongodb.

database
The name of the
ApsaraDB for
MongoDB
database.

Yes None.

collection The set of result
table data. Yes None.

uri

The connection
string of the
ApsaraDB for
MongoDB
database.

Yes None.

5.6.3.17. Create an ApsaraDB for MongoDB result
table

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 195

keepAlive

Specifies
whether to
maintain the
persistent
connection.

No Default value: true.

maxConnectionId
leTime

The time-out
duration of the
connection.

No

The integer value. Unit: milliseconds.
This parameter cannot be set to a
negative value. Default value: 60000.
If this parameter is set to 0, the
connection does not time out.

batchSize
The number of
data records that
can be written at
a time.

No

The integer value. Default value:
1024. The system sets the maximum
number of data records that can be
stored in the buffer. When the number
of data records reaches the specified
value of batchSize, the system triggers
the data output.

Note When the checkpoint
time arrives, the data output is
triggered even if the number of
data records in the buffer does
not reach the specified value of
batchSize.

This topic describes how to create an AnalyticDB for MySQL V3.0 result table in Realtime
Compute for Apache Flink. This topic also describes the parameters in the WITH clause used
when you create an AnalyticDB for MySQL V3.0 result table.

Important
AnalyticDB for MySQL V3.0 result tables do not support the storage registration
feature.
This topic applies only to Blink 3.3.0 and later.
For more information about how to create an AnalyticDB for MySQL V2.0 result
table, see Create an AnalyticDB for MySQL V2.0 result table.
You can define an auto-increment primary key for an AnalyticDB for MySQL V3.0
database. If you want to use the auto-increment primary key, do not declare the
auto-increment field in a DDL statement. For example, if you use ID as an auto-
increment field, do not declare the ID field in the DDL statement. When a row of
output data is written to the AnalyticDB for MySQL V3.0 database, the value for the
auto-increment field is automatically filled.

DDL syntax
In Realtime Compute for Apache Flink, you can use AnalyticDB for MySQL V3.0 to store output
data. The following sample code provides an example on how to create an AnalyticDB for
MySQL V3.0 result table.

5.6.3.18. Create an AnalyticDB for MySQL V3.0
result table

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

196 > Document Version: 20231114

CREATE TABLE adb_output (
id INT,
len INT,
content VARCHAR,
PRIMARY KEY(id,len)
) WITH (
type='ADB30',
url='jdbc:mysql://<yourNetworkAddress>:<PortId>/<yourDatabaseName>',
tableName='<yourDatabaseTableName>',
userName='<yourDatabaseUserName>',
password='<yourDatabasePassword>'
);

Principles
Realtime Compute for Apache Flink writes data to an AnalyticDB for MySQL V3.0 result table
in two steps:

1. Converts each row of output data to a line of SQL statement.
2. Writes and executes the SQL statement in the destination database.

Parameters in the WITH clause

Parameter Description

R
e
q
ui
re
d

Remarks

type The type of the
connector.

Ye
s Set the value to ADB30 .

url

The Java
Database
Connectivity
(JDBC) URL of the
database.

Ye
s

The URL of the AnalyticDB for MySQL database. Example:
 url='jdbc:mysql://databaseName****-cn-shenzhen-
a.ads.aliyuncs.com:10014/databaseName' .

Note
For more information about how to access an
AnalyticDB for MySQL database, see Query a
URL.
databaseName is the name of the AnalyticDB
for MySQL database.

tableName
The name of the
table in the
database.

Ye
s N/A.

username

The username
that is used to
access the
AnalyticDB for
MySQL database.

Ye
s N/A.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 197

password

The password
that is used to
access the
AnalyticDB for
MySQL database.

Ye
s N/A.

maxRetryTi
mes

The maximum
number of
retries for writing
data to the table.

N
o Default value: 3.

bufferSize

The maximum
number of data
records that can
be stored in the
buffer before
data
deduplication is
triggered.

N
o

Default value: 1000. This value indicates that duplicates
are removed when the number of input data records
reaches 1,000.

Note This parameter is valid only after you
specify the primary key.

batchSize

The maximum
number of data
records that can
be written at a
time.

N
o

Default value: 1000.

Note This parameter is valid only after you
specify the primary key.

flushInterval
Ms

The interval at
which the cache
is cleared.

N
o

Default value: 3000. Unit: milliseconds. This value
indicates that all the cached data is written to the result
table if the number of input data records does not reach
the batchSize value within 3,000 milliseconds.

ignoreDelete
Specifies
whether to
ignore delete
operations.

N
o

Default value: false. This value indicates that the delete
operations are supported.

replaceMode

Specifies
whether to use
the REPLACE
INTO statement
to insert data
into the table.

N
o

Valid values:
true: The REPLACE INTO statement is used to insert data
into the table. This is the default value.
false: The INSERT INTO ON DUPLICATE KEY statement is
used to insert data into the table.

Note This parameter is valid only when the
following conditions are met:

The Blink version is 3.X or later.
The AnalyticDB for MySQL version must be
3.1.3.5 or later.

excludeUpda
teColumns

The columns that
are not updated
when data that
has the same
primary key is
updated.

N
o

If you specify multiple columns that you do not want to
update, separate the column names with commas (,).
Example: excludeUpdateColumns=column1,column2 .

Important Make sure that the columns that
you want to ignore are written in one line and cannot
be wrapped. Otherwise, the setting does not take
effect.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

198 > Document Version: 20231114

reserveMilliS
econd

Specifies
whether to
reserve the
millisecond
component in a
value of the
TIMESTAMP data
type.

N
o

Default value: false. This value indicates that the
millisecond component is not reserved.

This topic describes how to create a custom result table in Realtime Compute for Apache
Flink. Custom result tables can meet different data output requirements.

Important
This topic applies only to Blink 1.4.5 and later.
This topic applies only to Realtime Compute for Apache Flink in exclusive mode.

Build a development environment
You can use one of the following methods to build a development environment for a custom
result table:

Use the development environment provided in examples.
To accelerate the development of your services, Realtime Compute for Apache Flink
provides the following examples of custom result tables:

Realtime Compute for Apache Flink V3.0
Realtime Compute for Apache Flink V2.0
Realtime Compute for Apache Flink V1.0

Note These examples provide development environments for specific versions.
You do not need to build another development environment.

Download a JAR package and build your own environment.

Note If the following dependencies are referenced in a Maven project, you must
set the Scope parameter to <scope>provided</scope> .

Realtime Compute for Apache Flink V3.0

5.6.3.19. Create a custom result table

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 199

https://github.com/RealtimeCompute/blink_customersink_3x
https://github.com/RealtimeCompute/blink_customersink_2x
https://github.com/RealtimeCompute/blink_customersink_1x

JAR packages that you need to download
blink-connector-custom-blink-3.2.1
blink-connector-common-blink-3.2.1

You must add the following information to the POM file to automatically download the
 flink-table_2.11 JAR package.

<profiles>
 <profile>
 <id>allow-snapshots</id>
 <activation><activeByDefault>true</activeByDefault></activation>
 <repositories>
 <repository>
 <id>snapshots-repo</id>
 <url>https://oss.sonatype.org/content/repositories/snapshots</url>
 <releases><enabled>false</enabled></releases>
 <snapshots><enabled>true</enabled></snapshots>
 </repository>
 </repositories>
 </profile>
</profiles>

Dependencies

 <dependencies>
 <dependency>
 <groupId>com.alibaba.blink</groupId>
 <artifactId>blink-connector-common</artifactId>
 <version>blink-3.2.1-SNAPSHOT</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>com.alibaba.blink</groupId>
 <artifactId>blink-connector-custom</artifactId>
 <version>blink-3.2.1-SNAPSHOT</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>com.alibaba.blink</groupId>
 <artifactId>flink-table_2.11</artifactId>
 <version>blink-3.2.1-SNAPSHOT</version>
 <scope>provided</scope>
 </dependency>
</dependencies>

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

200 > Document Version: 20231114

http://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/99987/cn_zh/1559663345940/blink-connector-custom-blink-3.2.1.jar
http://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/99987/cn_zh/1565233225498/blink-connector-common-blink-3.2.1.jar

Realtime Compute for Apache Flink V2.0
JAR packages that you need to download

blink-connector-common-blink-2.2.4
blink-connector-custom-blink-2.2.4
blink-table-blink-2.2.4
flink-table_2.11-blink-2.2.4
flink-core-blink-2.2.4

Dependencies

 <dependencies>
 <dependency>
 <groupId>com.alibaba.blink</groupId>
 <artifactId>blink-table</artifactId>
 <version>blink-2.2.4-SNAPSHOT</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.apache.flink</groupId>
 <artifactId>flink-table_2.11</artifactId>
 <version>blink-2.2.4-SNAPSHOT</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.apache.flink</groupId>
 <artifactId>flink-core</artifactId>
 <version>blink-2.2.4-SNAPSHOT</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>com.alibaba.blink</groupId>
 <artifactId>blink-connector-common</artifactId>
 <version>blink-2.2.4-SNAPSHOT</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>com.alibaba.blink</groupId>
 <artifactId>blink-connector-custom</artifactId>
 <version>blink-2.2.4-SNAPSHOT</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 201

http://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/99987/cn_zh/1544614396864/blink-connector-custom-blink-2.2.4.jar
http://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/99987/cn_zh/1544614508576/blink-connector-common-blink-2.2.4.jar
http://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/99987/cn_zh/1544614551435/blink-table-blink-2.2.4.jar
http://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/99987/cn_zh/1544614593263/flink-table_2.11-blink-2.2.4-20181102.033727-1.jar
http://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/99987/cn_zh/1547195750660/flink-core-blink-2.2.4.jar

Realtime Compute for Apache Flink V1.0
JAR packages that you need to download

blink-connector-common-blink-1.4
blink-connector-custom-blink-1.4
blink-table-blink-1.4
flink-core-blink-1.4
flink-streaming-scala_2.11-blink-1.4

Dependencies

 <dependencies>
 <dependency>
 <groupId>com.alibaba.blink</groupId>
 <artifactId>blink-connector-common</artifactId>
 <version>blink-1.4-SNAPSHOT</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>com.alibaba.blink</groupId>
 <artifactId>blink-connector-custom</artifactId>
 <version>blink-1.4-SNAPSHOT</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.apache.flink</groupId>
 <artifactId>flink-streaming-scala_${scala.binary.version}
</artifactId>
 <version>blink-1.4-SNAPSHOT</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.apache.flink</groupId>
 <artifactId>flink-core</artifactId>
 <version>blink-1.4-SNAPSHOT</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>com.alibaba.blink</groupId>
 <artifactId>blink-table</artifactId>
 <version>blink-1.4-SNAPSHOT</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>

API description
The class of a custom result table must inherit the CustomSinkBase base class of the custom
sink plug-in and is implemented by using the following methods:

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

202 > Document Version: 20231114

http://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/99987/cn_zh/1568700794800/blink-connector-common-blink-1.4-SNAPSHOT.jar
http://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/99987/cn_zh/1568700836064/blink-connector-custom-blink-1.4-SNAPSHOT.jar
http://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/99987/cn_zh/1568700856149/blink-table-blink-1.4-SNAPSHOT.jar
http://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/99987/cn_zh/1568700884035/flink-core-blink-1.4-SNAPSHOT.jar
http://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/99987/cn_zh/1568700899889/flink-streaming-scala_2.11-blink-1.4-SNAPSHOT.jar

protected Map<String,String> userParamsMap;// userParamsMap is the key-value pair defin
ed in the WITH clause of custom SQL statements. All keys are in lowercase letters.
protected Set<String> primaryKeys;// primaryKeys is the custom primary key field.
protected List<String> headerFields;// headerFields is the list of fields marked as hea
der.
protected RowTypeInfo rowTypeInfo;// rowTypeInfo indicates the field type and name.
/**
 * The initialization method. This method is called when you create a table for the fir
st time or when a failover occurs.
 *
 * @param taskNumber The serial number of the current node.
 * @ param numTasks The total number of sink nodes.
 * @throws IOException
 */
public abstract void open(int taskNumber,int numTasks) throws IOException;

/**
 * The close method that is used to release resources.
 *
 * @throws IOException
 */
public abstract void close() throws IOException;

/**
 * Insert a single row of data.
 *
 * @param row
 * @throws IOException
 */
public abstract void writeAddRecord(Row row) throws IOException;

/**
 * Delete a single row of data.
 *
 * @param row
 * @throws IOException
 */
public abstract void writeDeleteRecord(Row row) throws IOException;

/**
 * If you want to use this method to insert multiple rows of data at the same time, you
must load all data cached in the threads to the downstream storage system. If you do no
t need to insert multiple rows of data at the same time, this method is not required.
 *
 * @throws IOException
 */
public abstract void sync() throws IOException;

/**
* Return the class name.
*/
public String getName();

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 203

Example of creating a custom ApsaraDB for Redis result table
Download Demo of Realtime Compute for Apache Flink V3.0. Go to the
blink_customersink_3x directory, run the mvn clean package command, and then upload
the JAR package blink_customersink_3x/target/blink-customersink-3.x-1.0-
SNAPSHOT-jar-with-dependencies.jar that is compiled in the Realtime Compute for
Apache Flink console. After you reference required resources, you must specify type =
'custom' for the custom sink plug-in, and specify the class for implementing the API.

Important This example is only used as a reference for developing custom result
tables. It is not suitable for production purposes.

create table in_table(
 kv varchar
)with(
 type = 'random'
);

create table out_table(
 `key` varchar,
 `value` varchar
)with(
 type = 'custom',
 class = 'com.alibaba.blink.customersink.RedisSink',
 -- 1. You can define more custom parameters. These parameters can be obtained by us
ing userParamsMap in the open function.
 -- 2. The keys for the parameters in the WITH clause are not case-sensitive. In Rea
ltime Compute for Apache Flink, the values of the parameter keys are processed as lower
case letters. We recommend that you declare keys in lowercase letters in the data defin
ition language (DDL) statements that reference the data store.
 host = 'r-uf****.redis.rds.aliyuncs.com',
 port = '6379',
 db = '0',
 batchsize = '10',
 password = '<yourHostPassword>'
);

insert into out_table
select
substring(kv,0,4) as `key`,
substring(kv,0,6) as `value`
from in_table;

The following table describes the parameters of the plug-in of the ApsaraDB for Redis sink.

Parameter Description Required Remarks

host The internal endpoint of the
ApsaraDB for Redis instance. Yes None.

port
The number of the port that is
used to access the ApsaraDB
for Redis instance.

Yes None.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

204 > Document Version: 20231114

https://github.com/RealtimeCompute/blink_customersink_3x

password
The password that is used to
access the ApsaraDB for Redis
instance.

Yes None.

db The serial number of an
ApsaraDB for Redis database. No Default value: 0. This value

indicates db0.

batchsize The number of data records
that can be written at a time. No

Default value: 1. This value
indicates that multiple data
records cannot be written at a
time.

This topic describes how to create a Phoenix5 result table in Realtime Compute for Apache
Flink.

Important
This topic applies only to Realtime Compute for Apache Flink in exclusive node.
This topic applies only to Blink 3.4.0 and later.
Only Phoenix 5.X is supported.
Phoenix is an HBase SQL service deployed on an ApsaraDB for HBase instance. You
can use Phoenix only after you activate this service in ApsaraDB for HBase
instances.

DDL syntax
In Realtime Compute for Apache Flink, you can use Phoenix5 to store output data. The
following code shows an example:
create table US_POPULATION_SINK (
 `STATE` varchar,
 CITY varchar,
 POPULATION BIGINT,
 PRIMARY KEY (`STATE`, CITY)--- The primary key. This field is required.
) WITH (
 type = 'PHOENIX5',
 serverUrl = '<yourserverUrl>',
 tableName = '<yourTableName>'
);

Parameters in the WITH clause
Parameter Description Required Remarks

type The type of the result
table. Yes Set the value to

 PHOENIX5 .

5.6.3.20. Create a Phoenix5 result table

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 205

serverUrl

The URL of the
Phoenix5 query server.

If Phoenix5 is
created in a cluster,
the value of this
parameter is the
URL of Server Load
Balancer (SLB).
If Phoenix5 is
created on a single
server, the value of
this parameter is
the URL of the
server.

Yes

You must enable the
HBase SQL service in
an ApsaraDB for
HBase instance.
The value of the
serverUrl parameter is
in the
http://host:port
format. In the format:

host: indicates the
domain name of the
Phoenix5 service.
port: indicates the
port number of the
Phoenix5 service.
Set the value to
8765.

tableName The name of the
Phoenix5 table. Yes

The name of the
Phoenix5 table is in
the
SchemaName.TableNa
me format. In the
format:

SchemaName:
indicates the
schema name,
which can be
empty. This means
that the schema
name is not used
and only the table
name is used. In
this case, the
default schema of
the database is
used.
TableName: the
name of the table.

Sample code
The following sample code shows how to create a Phoenix5 result table in a Realtime
Compute for Apache Flink job.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

206 > Document Version: 20231114

create table `source` (
 `id` varchar,
 `name` varchar,
 `age` varchar,
 `birthday` varchar
) WITH (
 type = 'random'
);

create table sink (
 `id` varchar,
 `name` varchar,
 `age` varchar,
 `birthday` varchar,
 primary key (id)
) WITH (
 type = 'PHOENIX5',
 serverUrl = '<yourserverUrl>',
 tableName = '<yourTableName>'
);

INSERT INTO sink
 SELECT `id` ,`name` , `age` ,`birthday`
FROM `source`;

This topic describes how to create an AnalyticDB for PostgreSQL result table. This topic also
describes the parameters in the WITH clause and data type mappings used when you create
an AnalyticDB for PostgreSQL result table.

Important This topic applies to only Blink 3.6.0 and later.

Principles
Realtime Compute for Apache Flink writes data to an AnalyticDB for PostgreSQL result table
in two steps:

1. Converts each row of output data to a line of SQL statement.
2. Writes and executes the SQL statement in the destination database.

DDL syntax
In Realtime Compute for Apache Flink, you can use AnalyticDB for PostgreSQL to store output
data. The following sample code shows how to create an AnalyticDB for PostgreSQL result
table.

5.6.3.21. Create an AnalyticDB for PostgreSQL
result table

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 207

create table rds_output(
 id INT,
 len INT,
 content VARCHAR,
 PRIMARY KEY(id)
) with (
 type='adbpg',
 url='jdbc:postgresql://<yourNetworkAddress>:<PortId>/<yourDatabaseName>',
 tableName='<yourDatabaseTableName>',
 userName='<yourDatabaseUserName>',
 password='<yourDatabasePassword>'
);

Parameters in the WITH clause
Paramet
er Description Required Remarks

type The type of the
source table. Yes Set the value to adbpg .

url

The Java
Database
Connectivity
(JDBC) URL of the
database.

Yes

The JDBC URL used to access the AnalyticDB for
PostgreSQL database. The format is
'jdbc:postgresql://<yourNetworkAddress>:
<PortId>/<yourDatabaseName>'.

yourNetworkAddress: the internal IP address.
PortId: the port that is used to log on to the
database.
yourDatabaseName: the name of the database.

For example, you can set yourDatabaseName to
url='jdbc:postgresql://gp-xxxxxx.gpdb.cn-
chengdu.rds.aliyuncs.com:3432/postgres'.

tableNam
e

The name of the
table. Yes N/A

username

The account that
is used to access
the AnalyticDB
for PostgreSQL
database.

Yes N/A

password

The password
that is used to
access the
AnalyticDB for
PostgreSQL
database.

Yes N/A

maxRetry
Times

The maximum
number of retries
for writing data
to the table.

No Default value: 3.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

208 > Document Version: 20231114

useCopy
Specifies whether
to use the copy
API to write data.

No

Valid values:
0: indicates that the INSERT statement is executed
to write data to the AnalyticDB for PostgreSQL
database. This is the default value.
1: indicates that the copy API is used to write data
to the AnalyticDB for PostgreSQL database.

batchSize
The number of
data records that
can be written at
a time.

No Default value: 5000.

exception
Mode

The policy that is
used to handle
exceptions
during data
writing.

No

Valid values:
ignore: The system ignores the data that is written
when exceptions occur. This is the default value.
strict: If an exception occurs during data writing,
an error message appears on the Failover tab.

conflictMo
de

The policy that is
used to handle
primary key
conflicts or
unique index
conflicts.

No

Valid values:
ignore: Primary key conflicts are ignored and the
existing data is retained. This is the default value.
strict: If a primary key conflict occurs, an error
message appears on the Failover tab.
update: If a primary key conflict occurs, data is
updated.

targetSch
ema

The name of the
schema. No Default value: public.

connectio
nMaxActiv
e

The maximum
number of
connections
allowed for a
single task.

No
Configure this parameter based on the actual
number of parallel tasks and the maximum number
of connections allowed to the destination database.

Data type mapping
The following table lists the mappings between the field data types of AnalyticDB for
PostgreSQL and Realtime Compute for Apache Flink.

Data type of AnalyticDB for PostgreSQL Data type of Realtime Compute for Apache
Flink

BOOLEAN BOOLEAN

SMALLINT TINYINT

SMALLINT SMALLINT

INT INT

BIGINT BIGINT

DOUBLE PRECISION DOUBLE

TEXT VARCHAR

TIMESTAMP DATETIME

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 209

DATE DATE

REAL FLOAT

DOUBLE PRECISION DECIMAL

TIME TIME

TIMESTAMP TIMESTAMP

This topic describes how to create an InfluxDB result table in Realtime Compute for Apache
Flink. It also describes the parameters in the WITH clause and data type mapping involved
when you create an InfluxDB result table.

Important
InfluxDB does not support the storage registration feature.
This topic applies only to Blink 3.5.0-hotfix and later.

DDL syntax
In Realtime Compute for Apache Flink, you can use InfluxDB to store output data. The
following code shows an example:
create table stream_test_influxdb(
 `metric` varchar,
 `timestamp` BIGINT,
 `tag_value1` varchar,
 `field_fieldValue1` Double
)with(
 type = 'influxdb',
 endpoint = 'http://service.cn.influxdb.aliyuncs.com:****',
 database = '<yourDatabaseName>',
 batchPutsize = '1',
 username = '<yourDatabaseUserName>',
 password = '<yourDatabasePassword>'
);

Default format for the created table:
Column 0: metric (VARCHAR). This column is required.
Column 1: timestamp (BIGINT). This column is required. Unit: milliseconds.
Column 2: tag_value1 (VARCHAR). This column is required. You must enter at least one
value in this column.
Column 3: field_fieldValue1 (DOUBLE). This column is required. You must enter at least one
value in this column.
To specify multiple field_fieldValue values, use the following format:

5.6.3.22. Create an InfluxDB result table

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

210 > Document Version: 20231114

field_fieldValue1 <Data type>,
field_fieldValue2 <Data type>,
...
field_fieldValueN <Data type>

The following code shows an example:

field_fieldValue1 Double,
field_fieldValue2 INTEGER,
...
field_fieldValueNINTEGER

Note An InfluxDB result table can contain only metric, timestamp, tag_*, and
field_*.

Parameters in the WITH clause

Parameter Description Require
d Remarks

type The type of the result
table. Yes Set the value to InfluxDB.

endpoint The endpoint of the
InfluxDB database. Yes

The endpoint of an InfluxDB database is the VPC
endpoint of the InfluxDB database. For example,
you can set this parameter to
https://localhost:3242 or http://localhost:8086.
Endpoints support HTTP and HTTPS.

database The name of the
InfluxDB database. Yes For example, you can set this parameter to db-

blink or blink.

batchPutSiz
e

The number of data
records that are
submitted at a time.

No Default value: 500.

username
The username that is
used to access the
InfluxDB database.

Yes You must have the write permission on the
InfluxDB database.

password
The password that is
used to access the
InfluxDB database.

Yes Default value: 0.

retentionPo
licy The retention policy. No If this parameter is empty, the default retention

policy is used for each database.

Field type mapping

InfluxDB data type Data type of Realtime Compute for Apache
Flink

BOOLEAN BOOLEAN

INT INT

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 211

BIGINT BIGINT

FLOAT FLOAT

DECIMAL DECIMAL

DOUBLE DOUBLE

DATE DATE

TIME TIME

TIMESTAMP TIMESTAMP

VARCHAR VARCHAR

This topic describes how to use the standard CREATE TABLE statement to create a dimension
table in Realtime Compute for Apache Flink. To use the standard data definition language
(DDL) statement to create a dimension table, add PERIOD FOR SYSTEM_TIME to the statement
to define the change period of the dimension table.

Example
CREATE TABLE white_list (
 id varchar,
 name varchar,
 age int,
 PRIMARY KEY (id),
 PERIOD FOR SYSTEM_TIME --Define the change period of the dimension table. In Realtim
e Compute for Apache Flink V3.X and later, you do not need to declare PERIOD FOR SYSTEM
_TIME. You need to declare only FOR SYSTEM_TIME AS OF PROCTIME() when you join a dimens
ion table with another table.
) with (
 type = 'RDS',
 ...
);

5.6.4. Create a dimension table
5.6.4.1. Overview

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

212 > Document Version: 20231114

Note
You must specify a primary key for each dimension table. When you join a
dimension table with another table, the ON clause must contain the equivalent (=)
conditions for all the primary key fields.
You can execute only the INNER JOIN or the LEFT JOIN statement to join a
source table and a dimension table.
The unique key of the dimension table must be the same as that of the database
table. If they are not the same, you may encounter the following issues:

Reading data from the dimension table slows down.
When you join the dimension table with another table, the join operation
starts from the first data record. In the Realtime Compute for Apache Flink
job, multiple data records that have the same key are sequentially updated
in the database. This may cause errors in the join result.

INDEX syntax

Note We recommend that you use the INDEX syntax in Realtime Compute for
Apache Flink V2.2.7 and later.

In Realtime Compute for Apache Flink versions that are earlier than V2.2, you must declare
the PRIMARY KEY when you create a dimension table. In this case, you can perform only
one-to-one table joins. The INDEX syntax is introduced to meet the requirements for one-
to-many table joins. For dimension tables that do not support the ALL cache policy, you can
use INDEX LOOKUP to meet the requirements for one-to-many table joins.
CREATE TABLE Persons (
 ID bigint,
 LastName varchar,
 FirstName varchar,
 Nick varchar,
 Age int,
 [UNIQUE] INDEX(LastName,FirstName,Nick), --Define the index. You do not need to spe
cify the index type, such as fulltext or clustered.
 PERIOD FOR SYSTEM_TIME
) with (
 type='RDS',
 ...
);

 UNIQUE INDEX represents a one-to-one table join. INDEX represents a one-to-many
table join.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 213

Note
 UNIQUE CONSTRAINT (UNIQUE KEY) is supported in Realtime Compute for Apache
Flink V2.2.7 and later. In Realtime Compute for Apache Flink versions that are
earlier than V2.2.7, you can define the index by using PRIMARY KEY .
The engine preferentially uses UNIQUE INDEX when it generates an execution
plan. If INDEX is used in the DDL statement and the JOIN equivalent (=) conditions
include both UNIQUE and NON-UNIQUE INDEX , the system preferentially uses
 UNIQUE INDEX to search for data in the right table.
The dimension table types, such as ApsaraDB RDS dimension table and
MaxCompute dimension table, supports one-to-many table joins.
In one-to-many table joins, you can use the maxJoinRows parameter to specify
the maximum number of associated rows in the right table for each row in the left
table. The default value is 1024. If one row is associated with an excessively large
number of rows, the performance of stream processing tasks may be compromised.
If this occurs, you can increase the cache size. You can use the cacheSize
parameter to limit the number of keys in the left table.
The INDEX syntax cannot be used to perform one-to-many table joins on
Tablestore and Hologres dimension tables.

Differences among dimension tables, source tables, and result
tables

Item Source Table Result table Dimension table

Trigger computing Supported Not supported Not supported

Read data
Supported (You can
directly read data from
source tables.)

Not supported

Supported (You can
read data from
dimension tables only
by joining a dimension
table with a source
table.)

Write data Not supported Supported Not supported

Cache data Not supported Not supported Supported

This topic describes how to create a Hologres dimension table. This topic also describes the
parameters in the WITH clause, cache parameters, and data type mappings used when you
create a Hologres dimension table.

Important
This topic applies only to Blink 3.6.0 and later. If your Blink version is earlier than
3.6.0, you can submit a ticket to obtain the required Java Archive (JAR) files for the
upgrade.
We recommend that you use Hologres 0.7 or later.

What is Hologres?

5.6.4.2. Create a Hologres dimension table

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

214 > Document Version: 20231114

https://workorder-intl.console.aliyun.com/

Hologres is compatible with the PostgreSQL protocol and closely connected to the big data
ecosystem. Hologres supports real-time analysis and processing of petabytes of data with
high concurrency and low latency. This allows you to use existing Business Intelligence (BI)
tools to perform multidimensional analysis and business exploration.

Limits
We recommend that you use row-oriented storage to create a Hologres dimension table.
Column-oriented storage consumes a large number of performance overheads for point
queries.
When you use row-oriented storage to create a Hologres dimension table, you must set the
primary key to clustering key. The following statements show an example:

begin;
create table test(a int primary key, b text, c text, d float8, e int8);
call set_table_property('test', 'orientation', 'row');
call set_table_property('test', 'clustering_key', 'a');
commit;

When you join a Hologres dimension table with another table, you must specify all the
fields in the primary key of the dimension table in the ON clause.
Hologres does not support a one-to-many mapping between input and output when you use
Hologres connectors to join dimension tables.
You cannot read data from Hologres partitioned tables.

DDL syntax
In Realtime Compute for Apache Flink, you can use a Hologres table as a dimension table.
The following code shows an example.
CREATE TABLE hologres_dim_table(
 id INT,
 len INT,
 content VARCHAR,
 PRIMARY KEY (id),
 PERIOD FOR SYSTEM_TIME --Define the change period of the dimension table.
) WITH (
 type='hologres',
 endpoint='...',
 dbname='...',
 tablename='...',
 username='...',
 password='...'
);

Parameters in the WITH clause
Parameter Description Required Remarks

type The type of the
database. Yes Set the value to

hologres.

endpoint The endpoint of the
Hologres instance. Yes N/A.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 215

tablename

The name of the table.

Note If the
public schema is
not used, you
must set
tableName to
schema.tableNa
me. Yes N/A.

dbname The name of the
database. Yes N/A.

username
The username that is
used to access the
database.

Yes N/A.

password
The password that is
used to access the
database.

Yes N/A.

Cache parameters
Param
eter Description Required Remarks

cache The cache policy. No

The following cache policies are supported:
None: indicates that data is not cached. This is the
default value.
LRU: indicates that only the specified data in the
dimension table is cached. Each time the system
receives a data record, the system searches the
cache. If the system does not find the record in the
cache, the system searches for the data record in
the physical dimension table.
If this cache policy is used, you must configure the
cacheSize and cacheTTLMs parameters.

cacheS
ize

The maximum
number of rows of
data records that
can be cached.

No This parameter is available when you set the cache
parameter to LRU. Default value: 10000.

cacheT
TLMs

The timeout period
of the cache. Unit:
milliseconds.

No
You can set this parameter when you set the cache
parameter to LRU. By default, the cached data does
not expire.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

216 > Document Version: 20231114

partiti
onedJo
in

Specifies whether
to use the joinKey
for partitioning.

No

Valid values:
false: The joinKey is not used for partitioning.
true: The joinKey is used for partitioning. Data is
distributed to JOIN nodes to improve the cache hit
rate.

async
Specifies whether
to read data in
asynchronous
mode.

No

Valid values:
false: Data is read synchronously. This is the
default value.
true: Data is read asynchronously.

Data type mappings

Data type of Hologres Data type of Realtime Compute for Apache
Flink

INT INT

INT[] ARRAY<INT>

BIGINT BIGINT

BIGINT[] ARRAY<BIGINT>

REAL FLOAT

REAL[] ARRAY<FLOAT>

DOUBLE PRECISION DOUBLE

DOUBLE PRECISION[] ARRAY<DOUBLE>

BOOLEAN BOOLEAN

BOOLEAN[] ARRAY<BOOLEAN>

TEXT VARCHAR

TEXT[] ARRAY<VARCHAR>

NUMERIC DECIMAL

DATE DATE

TIMESTAMP WITH TIMEZONE TIMESTAMP

Sample code
In Realtime Compute for Apache Flink, you can use a Hologres table as a dimension table.
The following code shows an example.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 217

create table randomSource (a int, b VARCHAR, c VARCHAR) with (type = 'random');

create table test (
 a int,
 b VARCHAR,
 c VARCHAR,
 PRIMARY KEY (a, b), PERIOD FOR SYSTEM_TIME
) with (
 type = 'hologres',
 ...
);

create table print_sink (
 a int,
 b VARCHAR
) with (
 type = 'print',
 `ignoreWrite` = 'false'
);

insert into print_sink
select randomSource.a, test.b from randomSource
LEFT JOIN test FOR SYSTEM_TIME AS OF PROCTIME()
on randomSource.a = test.a and randomSource.b = test.b;

This topic describes how to create a Tablestore dimension table in Realtime Compute for
Apache Flink.

Important This topic applies only to Blink 1.4.5 and later.

Introduction to Tablestore
Tablestore is a distributed NoSQL database service that is built on the Apsara distributed
operating system of Alibaba Cloud. Tablestore adopts sharding and load balancing
technologies to scale out services and handle concurrent transactions. You can use
Tablestore to store and query large amounts of structured data in real time.

Example
In Realtime Compute for Apache Flink, you can use a Tablestore table as a dimension table.
The following code shows an example:

5.6.4.3. Create a Tablestore dimension table

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

218 > Document Version: 20231114

CREATE TABLE ots_dim_table (
 id int,
 len int,
 content VARCHAR,
 PRIMARY KEY (id),
 PERIOD FOR SYSTEM_TIME--Define the change period of the dimension table.
) WITH (
 type='ots',
 endPoint='<yourEndpoint>',
 instanceName='<yourInstanceName>',
 tableName='<yourTableName>',
 accessId='<yourAccessId>',
 accessKey='<yourAccessKey>'
);

Note
When you declare a dimension table, you must specify a primary key.
When you join a dimension table with another table, the ON clause must contain
the equivalent (=) conditions for all the primary key fields.
The primary key of a Tablestore table is the row key of the table.

Parameters in the WITH clause
Parameter Description Remarks

type The type of the dimension
table. Set the value to ots .

endPoint The endpoint of the Tablestore
instance.

Enter the VPC endpoint if the
instance is deployed in a VPC.

instanceName The name of the Tablestore
instance. None.

tableName The name of the Tablestore
dimension table. None.

accessId The AccessKey ID that is used
to access Tablestore. None.

accessKey The AccessKey secret that is
used to access Tablestore. None.

Parameters in the CACHE clause
Parameter Description Remarks

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 219

cache The cache policy.

Valid values:
None: indicates that data is not cached. This is
the default cache policy.
LRU: indicates that only the specified data in
the dimension table is cached. The system
searches the cache each time it receives a
data record. If the system does not find the
record in the cache, it searches for the data
record in the physical dimension table.
If you use this cache policy, you must specify
the cacheSize and cacheTTLMs parameters.

cacheSize
The maximum number
of rows that can be
cached.

You can set this parameter when the cache
parameter is set to LRU. Default value: 10000.

cacheTTLMs
The cache timeout
period. Unit:
milliseconds.

You can set this parameter when the cache
parameter is set to LRU.

Sample code

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

220 > Document Version: 20231114

CREATE TABLE datahub_input1 (
id BIGINT,
name VARCHAR,
age BIGINT
) WITH (
type='datahub'
);

CREATE TABLE phoneNumber(
name VARCHAR,
phoneNumber bigint,
primary key(name),
PERIOD FOR SYSTEM_TIME -- The identifier of a dimension table.
)with(
type='ots'
);

CREATE TABLE result_infor(
id bigint,
phoneNumber bigint,
name VARCHAR
)with(
type='rds'
);

INSERT INTO result_infor
SELECT
t.id,
w.phoneNumber,
t.name
FROM datahub_input1 as t
JOIN phoneNumber FOR SYSTEM_TIME AS OF PROCTIME() as w --You must include this clause w
hen you perform a JOIN operation on the dimension table.
ON t.name = w.name;

For more information about the syntax for dimension tables, see JOIN statements for
dimension tables.

This topic describes how to create an ApsaraDB RDS for MySQL dimension table in Realtime
Compute for Apache Flink. This topic also describes the parameters in the WITH clause, cache
parameters, and data type mapping used when you create an ApsaraDB RDS for MySQL
dimension table.

ApsaraDB RDS for MySQL

5.6.4.4. Create an ApsaraDB RDS for MySQL
dimension table

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 221

ApsaraDB RDS for MySQL is developed based on a branch of MySQL source code and
provides excellent performance. ApsaraDB RDS for MySQL is a tried and tested solution that
handled large volumes of concurrent traffic during Double 11. ApsaraDB RDS for MySQL
provides basic features such as whitelist configuration, backup and restoration, Transparent
Data Encryption (TDE), data migration, and management of instances, accounts, and
databases. For more information about ApsaraDB RDS for MySQL, see Overview.

Limits
Realtime Compute for Apache Flink does not allow you to use ApsaraDB RDS for MySQL V8.0
by using the storage registration method. To use ApsaraDB RDS for MySQL V8.0, we
recommend that you configure a plaintext AccessKey pair. For more information about the
storage registration method, see Overview.

DDL syntax
The following sample code shows how to create an ApsaraDB RDS for MySQL dimension
table:

CREATE TABLE rds_dim_table(
 id INT,
 len INT,
 content VARCHAR,
 PRIMARY KEY (id),
 PERIOD FOR SYSTEM_TIME --Define the change period of the dimension table.
) with (
 type='rds',
 url='<yourDatabaseURL>',
 tableName='<yourDatabaseTableName>',
 userName='<yourDatabaseUserName>',
 password='<yourDatabasePassword>'
);

Note
You must specify a primary key when you declare a dimension table. When you join a
dimension table with another table, the ON condition must contain equivalent conditions
that include all primary keys. The primary key of an ApsaraDB RDS for MySQL or
Distributed Relational Database Service (DRDS) database can be defined as the primary
key or unique index column of an ApsaraDB RDS for MySQL or DRDS dimension table.

Parameters in the WITH clause

Para
meter Description Requi

red Remarks

type
The type of the
dimension table. Yes Set the value to rds .

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

222 > Document Version: 20231114

https://www.alibabacloud.com/help/en/rds/apsaradb-rds-for-mysql/overview-3

url

The Java
Database
Connectivity
(JDBC) URL of the
database.

Yes

Set the value in the jdbc:mysql://<Internal
endpoint>/<databaseName> format. Replace
databaseName with the name of your database. For more
information about the internal endpoint, see View and
change the internal and public endpoints and port numbers
of an ApsaraDB RDS for MySQL instance.

tableN
ame

The name of the
table. Yes N/A.

userN
ame

The username
that is used to
access the
ApsaraDB RDS
database.

Yes N/A.

passw
ord

The password
that is used to
access the
ApsaraDB RDS
database.

Yes N/A.

maxRe
tryTim
es

The maximum
number of
connection
attempts.

No Default value: 10.

Cache parameters

Para
meter Description Requi

red Remarks

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 223

https://www.alibabacloud.com/help/en/rds/apsaradb-rds-for-mysql/view-and-change-the-internal-and-public-endpoints-and-port-numbers-of-an-apsaradb-rds-for-mysql-instance/#section-0jj-0ib-qjn

cache
The policy that is
used to cache
data.

No

Valid values:
None: indicates that data is not cached. This is the
default cache policy.
LRU: indicates that only the specified data in the
dimension table is cached. Each time the system receives
a data record, the system searches the cache. If the
system does not find the record in the cache, the system
searches for the data record in the physical dimension
table.
If this cache policy is used, you must configure the
cacheSize and cacheTTLMs parameters.
ALL: indicates that all the data in the dimension table is
cached. Before the system runs a job, the system loads
all data in the dimension table to the cache. This way, the
cache is searched for all subsequent queries in the
dimension table. If the system does not find the data
record in the cache, the join key does not exist. The
system reloads all data in the cache after cache entries
expire.
If the amount of data in a remote table is small and a
large number of missing keys exist, we recommend that
you set this parameter to ALL. The source table and
dimension table cannot be associated based on the ON
clause.
If you use this cache policy, you must configure the
cacheTTLMs and cacheReloadTimeBlackList parameters.

Note
If you set the cache parameter to ALL, you must
increase the memory of the node for joining tables
because the system asynchronously loads data from
the dimension table. The increased memory size is
twice the memory size of the remote table.

cache
Size

The maximum
number of rows
of data records
that can be
cached.

No This parameter is available only if you set the cache
parameter to LRU . Default value: 10000.

cache
TTLMs

The cache
timeout period.
Unit:
milliseconds.

No

If the cache parameter is set to LRU , the cacheTTLMs
parameter specifies the time allowed before cache entries
expire. Cache entries do not expire by default. If the cache
parameter is set to ALL , the cacheTTLMs parameter
specifies the interval at which the cache is loaded. The
cache is not reloaded by default.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

224 > Document Version: 20231114

cache
Reload
TimeBl
ackList

The time periods
during which the
cache is not
refreshed. This
parameter takes
effect when the
cache parameter
is set to ALL .
The cache is not
refreshed during
the time periods
that you specify
for this
parameter. This
parameter is
useful for large-
scale online
promotional
events such as
Double 11.

No

This parameter is empty by default. For example, you can
set this parameter to 2017-10-24 14:00 -> 2017-10-24
15:00, 2017-11-10 23:30 -> 2017-11-11 08:00 .
Multiple time periods are separated by commas (,). The
start time and end time of each time period are separated
by a hyphen and a greater-than sign (->).

maxJoi
nRows

The maximum
number of results
that are returned
each time a data
record in the
primary table is
queried and
matched with
data records in
the dimension
table.

No

Default value: 1024. If you can estimate that a data record
in the primary table corresponds to a maximum of n data
records in the dimension table, you can set the
maxJoinRows parameter to n to ensure efficient matching
in Realtime Compute for Apache Flink.

Note
When you join a dimension table with another table,
this parameter specifies the maximum number of
results that can be returned after a data record in the
primary table is matched with data records in the
dimension table.

Sample code
The following sample code shows how to create an ApsaraDB RDS dimension table in a
Realtime Compute for Apache Flink job.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 225

CREATE TABLE datahub_input1 (
id BIGINT,
name VARCHAR,
age BIGINT
) WITH (
 type='datahub',
 endPoint='http://dh-cn-hangzhou.aliyun-inc.com',
 project='<yourProjectName>',
 topic='<yourTopic>',
 accessId='<yourAccessID>',
 accessKey='<yourAccessSecret>',
 startTime='2017-07-21 00:00:00'
);

create table phoneNumber(
name VARCHAR,
phoneNumber BIGINT,
primary key(name),
PERIOD FOR SYSTEM_TIME--Define the change period of the dimension table.
)WITH(
 type='rds',
 url='<yourDatabaseURL>',
 tableName='<yourDatabaseTableName>',
 userName='<yourDatabaseUserName>',
 password='<yourDatabasePassword>'
);

CREATE table result_infor(
id BIGINT,
phoneNumber BIGINT,
name VARCHAR
)WITH(
 type='rds',
 url='<yourDatabaseURL>',
 tableName='<yourDatabaseTableName>',
 userName='<yourDatabaseUserName>',
 password='<yourDatabasePassword>'
);

INSERT INTO result_infor
SELECT
t.id,
w.phoneNumber,
t.name
FROM datahub_input1 as t
JOIN phoneNumber FOR SYSTEM_TIME AS OF PROCTIME() as w --You must include this clause w
hen you perform a JOIN operation on the dimension table.
ON t.name = w.name;

For more information about the detailed syntax of the JOIN statements for a dimension table,
see JOIN statements for dimension tables.

Data type mapping

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

226 > Document Version: 20231114

Data type of ApsaraDB RDS Data type of Realtime Compute for Apache
Flink

BOOLEAN BOOLEAN

TINYINT TINYINT

SMALLINT SMALLINT

INT INT

BIGINT BIGINT

FLOAT FLOAT

DECIMAL DECIMAL

DOUBLE DOUBLE

DATE DATE

TIME TIME

TIMESTAMP TIMESTAMP

VARCHAR VARCHAR

VARBINARY VARBINARY

This topic describes how to create an ApsaraDB for HBase dimension table in Realtime
Compute for Apache Flink. It also describes the parameters in the WITH and CACHE clauses
used when you create such a dimension table.

5.6.4.5. Create an ApsaraDB for HBase dimension
table

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 227

Important
Blink versions earlier than Blink 3.3.0 support only HBase Standard Edition.
Blink 3.3.0 and later versions support HBase Standard Edition and HBase Enhanced
Edition.
Blink 3.5.0 and later versions support switchover between primary and secondary
ApsaraDB for HBase databases for data writing.
For more information about the JOIN syntax of an ApsaraDB for HBase dimension
table, see JOIN statements for dimension tables.
ApsaraDB for HBase dimension tables in Realtime Compute for Apache Flink do not
support user-created open source HBase.
Only one primary key is allowed in an ApsaraDB for HBase dimension table.

DDL syntax
HBase Standard Edition

CREATE TABLE hbase (
 `key` varchar,
 `name` varchar,
 PRIMARY KEY (`key`), -- The rowkey field of the ApsaraDB for HBase dimension table.
 PERIOD FOR SYSTEM_TIME -- The identifier of a dimension table.
) with (
 TYPE = 'cloudhbase',
 zkQuorum = '<yourzkQuorum>',
 columnFamily = '<yourColumnFamilyName>',
 tableName = '<yourTableName>'
);

HBase Enhanced Edition

CREATE TABLE hbase (
 `key` varchar,
 `name` varchar,
 PRIMARY KEY (`key`), -- The rowkey field of the ApsaraDB for HBase dimension table.
 PERIOD FOR SYSTEM_TIME -- The identifier of a dimension table.
) with (
 TYPE = 'cloudhbase',
 endPoint = '<host:port>',-- The Java API URL that is used to access the Enhanced Ed
ition of an ApsaraDB for HBase database.
 userName = 'root', -- The username that is used to access an ApsaraDB for HBase da
tabase.
 password = 'root', -- The password that is used to access an ApsaraDB for HBase dat
abase.
 columnFamily = '<yourColumnFamilyName>',
 tableName = '<yourTableName>'
);

HBase Enhanced Edition for Blink 3.5.0 and later

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

228 > Document Version: 20231114

create table liuxd_user_behavior_test_front (
 row_key varchar,
 from_topic varchar,
 origin_data varchar,
 record_create_time varchar,
 primary key (row_key)
) with (
 type = 'cloudhbase',
 zkQuorum = '<host:port>', -- The Java API URL that is used to access the Enhanced E
dition of an ApsaraDB for HBase database.
 userName = 'root', -- The username that is used to access an ApsaraDB for HBase da
tabase.
 password = 'root', -- The password that is used to access an ApsaraDB for HBase dat
abase.
 columnFamily = '<yourColumnFamily>',
 tableName = '<yourTableName>',
 batchSize = '500'
);

Blink 3.5.0 and later versions support switchover between primary and secondary
ApsaraDB for HBase databases for data writing.

create table liuxd_user_behavior_test_front (
 row_key varchar,
 from_topic varchar,
 origin_data varchar,
 record_create_time varchar,
 primary key (row_key)
) with (
 type = 'cloudhbase',
 zkQuorum = '<host:port>', -- The URL that is used to access ApsaraDB for HBase data
bases in high availability (HA) mode.
 haClusterID = 'ha-xxx', -- The instance ID of ApsaraDB for HBase databases in HA mod
e.
 userName = 'root', -- The username that is used to access an ApsaraDB for HBase da
tabase.
 password = 'root', -- The password that is used to access an ApsaraDB for HBase dat
abase.
 columnFamily = '<yourColumnFamily>',
 tableName = '<yourTableName>',
 batchSize = '500'
);

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 229

Note
When you declare a dimension table, you must specify a primary key.
When you join a dimension table with another dimension table, the ON condition
must contain equivalent conditions that include all primary keys. The primary key
in the preceding examples is row_key.
The connection parameters in HBase Standard Edition and HBase Enhanced Edition
are different.

HBase Standard Edition: zkQuorum .
HBase Enhanced Edition: endPoint .
HBase Standard Edition and HBase Enhanced Edition for Blink 3.5.0 and
later: zkQuorum .

Parameters in the WITH clause

Paramete
r Description

Req
uire
d

Remarks

type The type of the
dimension table. Yes Set the value to cloudhbase .

zkQuorum

The ZooKeeper
address configured
for the ApsaraDB
for HBase cluster.
The address is a list
of hosts separated
by commas (,).

Yes

You can view the configuration related to
hbase.zookeeper.quorum in the hbase-site.xml
file.

Note This parameter takes effect only in
HBase Standard Edition.

zkNodePar
ent

The path of the
cluster configured
on the ZooKeeper
servers.

No

You can view the configuration related to
hbase.zookeeper.quorum in the hbase-site.xml
file.

Note This parameter takes effect only in
HBase Standard Edition.

endPoint

The name of the
region where your
ApsaraDB for
HBase instance is
deployed.

Yes

You can obtain the value of this parameter from the
console of your ApsaraDB for HBase instance.

Note This parameter takes effect only in
HBase Enhanced Edition.

userName
The username that
is used to log on to
the ApsaraDB for
HBase database.

No Note This parameter takes effect only in
HBase Enhanced Edition.

password
The password that
is used to log on to
the ApsaraDB for
HBase database.

No Note This parameter takes effect only in
HBase Enhanced Edition.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

230 > Document Version: 20231114

tableName
The name of the
ApsaraDB for
HBase dimension
table.

Yes None.

columnFa
mily

The column family
name. Yes Only the same column family can be inserted.

maxRetryT
imes

The maximum
number of retries
for writing data into
the table.

No Default value: 10.

partitioned
Join

Specifies whether
to use joinKey for
partitioning.

No
Default value: False. If you set this parameter to True,
joinKey is used for partitioning. Data is delivered to
each node for joining, which increases the cache hit
ratio.

shuffleEm
ptyKey

Specifies whether
to randomly send
upstream empty
keys to
downstream nodes.

No

Default value: True. Valid values:
True: If multiple empty keys exist in the upstream,
Realtime Compute for Apache Flink randomly sends
all the empty keys to each JOIN node.
False: If multiple empty keys exist in the upstream,
Realtime Compute for Apache Flink sends all the
empty keys to a single JOIN node.

Note This parameter can be used only
after the partitionedJoin parameter takes effect.

Parameters in the CACHE clause

Parameter Description Require
d Remarks

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 231

cache The policy for
caching data. No

Valid values:
None (default value): indicates that no
data is cached.
LRU: indicates that partial data in the
dimension table is cached. The system
searches the cache each time it receives a
data record. If the system does not find the
record in the cache, it searches for the data
record in the physical dimension table.
If this cache policy is used, you must
configure the cacheSize and cacheTTLMs
parameters.
ALL: indicates that all data in the
dimension table is cached. Before a
Realtime Compute for Apache Flink job
starts to run, Realtime Compute for Apache
Flink loads all data in the dimension table
to the cache, and then searches the cache
for all subsequent queries in the dimension
table. If the system does not find the data
record in the cache, the join key does not
exist. The system reloads all data in the
cache after cache entries expire.
If the amount of data of a remote table is
small and a large number of missing keys
exist, we recommend that you set this
parameter to ALL. (The source table and
dimension table cannot be associated
based on the ON clause.)
If this cache policy is used, you must
configure the cacheTTLMs and
cacheReloadTimeBlackList parameters.

Note If the cache parameter is
set to ALL, the memory of the node for
joining tables must be increased because
Realtime Compute for Apache Flink
asynchronously loads data from the
dimension table. The increased memory
size is two times that of the remote
table.

cacheSize
The maximum
number of data
records that can be
cached. Unit: lines.

No
You can set this parameter when the cache
parameter is set to LRU . Default value:
10000.

cacheTTLMs
The cache timeout
period. Unit:
milliseconds.

No

If the cache parameter is set to LRU , the
cacheTTLMs parameter specifies the time
before cache entries expire. Cache entries do
not expire by default. If the cache parameter
is set to ALL , the cacheTTLMs parameter
specifies the interval at which the cache is
loaded. The cache is not reloaded by default.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

232 > Document Version: 20231114

cacheReloadTi
meBlackList

The time periods
during which the
cache is not
refreshed. This
parameter is used
when the cache
parameter is set to
 ALL . The cache is

not refreshed during
the time periods that
you specify for this
parameter. This
parameter is useful
for massive online
promotional events
such as Double 11.

No

This parameter is empty by default. Custom
input format:
2017-10-24 14:00 -> 2017-10-24
15:00, 2017-11-10 23:30 -> 2017-11-
11 08:00

Separate multiple time periods with commas
(,). Separate the start time and end time of
each time period with a hyphen and a
greater-than sign (->).

cacheScanLimit

The maximum
number of rows
returned by the
server to the client
for each remote
procedure call (RPC)
when the server
reads full ApsaraDB
for HBase data. This
parameter is used
when the cache
parameter is set to
 ALL . .

No Default value: 100.

Sample code
The following sample code demonstrates how to create an ApsaraDB for HBase dimension
table in a Realtime Compute for Apache Flink job.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 233

create table source (
 id TINYINT,
 name BIGINT
) with (
 type = 'random'
);

create table dim (
 id TINYINT,
 score BIGINT
 primary key(id),
 PERIOD FOR SYSTEM_TIME
)with(
 type = 'cloudhbase',
 zkQuorum = '<yourzkQuorum>',
 columnFamily = '<yourColumnFamilyName>',
 tableName = '<yourTableName>'
);

CREATE table result_infor(
 id BIGINT,
 score BIGINT
)with(
 type='rds'
);

INSERT INTO result_infor
SELECT
 t.id,
 w.score
FROM source as t
JOIN dim FOR SYSTEM_TIME AS OF PROCTIME() as w
ON t.id = w.id;

This topic describes how to create a MaxCompute dimension table in Realtime Compute for
Apache Flink. This topic also describes the parameters in the WITH clause, cache parameters,
and data type mappings used when you create a MaxCompute dimension table.

Important
Blink 2.1.1 and later versions support MaxCompute dimension tables.
For more information about the query syntax of a dimension table, see JOIN
statements for dimension tables.
To use a MaxCompute dimension table, you must grant the read permissions to the
account used to access MaxCompute.

DDL syntax

5.6.4.6. Create a MaxCompute dimension table

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

234 > Document Version: 20231114

CREATE TABLE white_list (
 id varchar,
 name varchar,
 age int,
 PRIMARY KEY (id),
 PERIOD FOR SYSTEM_TIME -- The identifier of a dimension table.
) WITH (
 type = 'odps',
 endPoint = '<YourEndPoint>',
 project = '<YourProjectName>',
 tableName = '<YourtableName>',
 accessId = '<yourAccessKeyId>',
 accessKey = '<yourAccessKeySecret>',
 `partition` = 'ds=2018****',
 cache = 'ALL'
);

Note
When you declare a dimension table, you must specify a primary key. The primary
key of a MaxCompute dimension table must be unique. Duplicate primary keys are
deleted.
When you join a dimension table with another table, the ON condition must contain
equality conditions that include all primary keys.
partition is a keyword and must be commented with backticks ('), for example,
 'partition' .
If the dimension table is a partitioned table, Realtime Compute for Apache Flink
does not write partition key columns to the DDL statement.

Parameters in the WITH clause

Parameter Description Requ
ired Remarks

type
The type of the
dimension
table.

Yes Set the value to odps .

endPoint The endpoint of
MaxCompute. Yes For more information, see Endpoints.

tunnelEndpoint
The endpoint of
MaxCompute
Tunnel.

Yes

For more information, see Endpoints.

Note
This parameter is required if MaxCompute is
deployed in a virtual private cloud (VPC).

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 235

https://www.alibabacloud.com/help/en/maxcompute/user-guide/endpoints
https://www.alibabacloud.com/help/en/maxcompute/user-guide/endpoints

project
The name of
the
MaxCompute
project.

Yes N/A.

tableName The name of
the table. Yes N/A.

accessId
The AccessKey
ID that is used
to access
MaxCompute.

Yes N/A.

accessKey

The AccessKey
secret that is
used to access
MaxCompute.

Yes N/A.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

236 > Document Version: 20231114

partition The name of a
partition.

No

Static partitions
A MaxCompute table that has only one partition
For example, if only one partition key column
 ds exists, `partition` = 'ds=20180905'

indicates that data in the ds=20180905
partition is read.
A MaxCompute table that has multiple partitions
For example, if two partition key columns ds
and hh exist,
 `partition`='ds=20180905,hh=*' indicates

that data in the ds=20180905 partition is read.

Note
When you filter partitions, you must declare
the values of all partitions. In the preceding
example, if you declare only `partition`
= 'ds=20180905' , no partition data is
read.

Dynamic partitions
Blink 2.2.0 and later support 'partition' =
'max _pt()' . This setting indicates that the
partition ranked first in alphabetical order among
all partitions is loaded each time the system
loads data of partitions.
Blink 3.2.2 and later support 'partition' =
'max_pt_with_done()' . This setting indicates
that the partition with the file name extension
 .done and ranked first in alphabetical order

among all partitions is loaded each time the
system loads data of partitions.

maxRowCount

The maximum
number of rows
that Realtime
Compute for
Apache Flink
can load from a
table.

No

Default value: 100000.

Note
If your data contains more than 100,000 rows,
you must configure this parameter. We
recommend that you set this parameter to a
greater value than the actual number of rows to
be loaded.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 237

Cache parameters

Paramete
r Description Remarks

cache The cache policy.

You must set the cache parameter to ALL for a
MaxCompute dimension table and explicitly declare the
setting in the DDL statement.
ALL: indicates that all data in the dimension table is
cached. Before the system runs a job, the system loads
all data in the dimension table to the cache. This way, the
cache is searched for all subsequent queries in the
dimension table. If the system does not find the data
record in the cache, the join key does not exist. The
system reloads all data in the cache after cache entries
expire.
If the amount of data in a remote table is small and a
large number of missing keys exist, we recommend that
you set this parameter to ALL. The source table and
dimension table cannot be associated based on the ON
clause. If you set this parameter to ALL, you must
configure the cacheTTLMs and cacheReloadTimeBlackList
parameters.

Note
If the cache parameter is set to ALL, you
must increase the memory of the join node
because the system asynchronously loads
data of the dimension table. We recommend
that you increase the size of the memory at
least four times the amount of data in the
remote table. The size of the memory is
related to the MaxCompute storage
compression algorithm.
If a job exception occurs due to frequent
garbage collection when you use a super-
large MaxCompute dimension table, and this
issue persists even if you increase the
memory of the join node, we recommend
that:

For Blink 3.6.0 and later, set the
partitionedJoin parameter to true to
enable partitionedJoin optimization.
Use a dimension table with key-value
pairs for which you can set the cache
parameter to LRU, such as an
ApsaraDB for HBase dimension table.

cacheSize
The maximum number of
data records that can be
cached.

You can configure the cacheSize parameter based on
your business requirements. By default, data of 100,000
rows in a MaxCompute dimension table can be cached.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

238 > Document Version: 20231114

cacheTTLM
s The cache timeout period.

Unit: milliseconds. If you set the cache parameter to
 ALL , the timeout period specifies the interval at which

Realtime Compute for Apache Flink refreshes the cache.
The cache is not refreshed by default.

cacheReloa
dTimeBlack
List

The periods of time during
which cache is not
refreshed. This parameter
takes effect when the
cache parameter is set to
ALL. The cache is not
refreshed during the
periods of time that you
specify for this parameter.
This parameter is suitable
for large-scale online
promotional events such
as Double 11.

This parameter is empty by default. The following
example shows the format of the values: 2017-10-24
14:00 -> 2017-10-24 15:00, 2017-11-10 23:30 ->
2017-11-11 08:00 . Use delimiters based on the
following rules:

Separate time periods with commas (,) .

Separate the start time and end time of each time
period with a hyphen and a greater-than sign (->) .

partitionedJ
oin

Specifies whether to cache
full data of a dimension
table in the memory of
each concurrent job.

This parameter is optional. Default value: false. This
value indicates that full data of the dimension table is
cached in the memory of each concurrent job. If you set
this parameter to true, partial data of the dimension
table is cached in the memory of each concurrent task.

Sample code
The following sample code describes how to create a MaxCompute dimension table in a
Realtime Compute for Apache Flink job.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 239

CREATE TABLE datahub_input1 (
 id BIGINT,
 name VARCHAR,
 age BIGINT
) with (
 type='datahub'
);

CREATE TABLE odps_dim (
 name VARCHAR,
 phoneNumber BIGINT,
 PRIMARY KEY (name),
 PERIOD FOR SYSTEM_TIME -- The identifier of a dimension table.
) with (
 type = 'odps',
 endPoint = '<yourEndpointName>',
 project = '<yourProjectName>',
 tableName = '<yourTableName>',
 accessId = '<yourAccessId>',
 accessKey = '<yourAccessPassword>',
 `partition` = 'ds=20180905',-- For more information about dynamic or static partitio
ns, see the description for the parameters in the WITH clause.
 cache = 'ALL'
);

CREATE table result_infor(
 id BIGINT,
 phoneNumber BIGINT,
 name VARCHAR
)with(
 type='print'
);

INSERT INTO result_infor
SELECT
 t.id,
 w.phoneNumber,
 t.name
FROM datahub_input1 as t
JOIN odps_dim FOR SYSTEM_TIME AS OF PROCTIME() as w --You must include this clause when
you perform a JOIN operation on a dimension table.
ON t.name = w.name;

Data type mappings
The following table lists the mappings between the data types of MaxCompute and Realtime
Compute for Apache Flink (fully-managed Flink). We recommend that you declare the
mapping in a DDL statement.

Data type of MaxCompute Data type of BLINK

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

240 > Document Version: 20231114

TINYINT TINYINT

SMALLINT SMALLINT

INT INT

BIGINT BIGINT

FLOAT FLOAT

DOUBLE DOUBLE

BOOLEAN BOOLEAN

DATETIME TIMESTAMP

TIMESTAMP TIMESTAMP

VARCHAR VARCHAR

DECIMAL DECIMAL

BINARY VARBINARY

STRING VARCHAR

Note
Realtime Compute for Apache Flink supports only the preceding data types in
MaxCompute dimension tables.

FAQ
Q: What is the difference between max_pt() and max_pt_with_done() ?

 max_pt() indicates that the partition ranked first in alphabetical order among all
partitions is loaded. If the values of the partition parameter are sorted in alphabetical order,
 max_pt_with_done() returns the partition that ranks first in alphabetical order and ends
with the .done suffix.

Partition

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 241

ds=20190101

ds=20190101.done

ds=20190102

ds=20190102.done

ds=20190103

Differences between max_pt() and max_pt_with_done() :
 `partition`='max_pt_with_done()' returns the ds=20190102 partition.
 `partition`='max_pt()' returns the ds=20190103 partition.

Note
Only Blink 3.3.2 and later support 'partition' = 'max_pt_with_done()' .

Q: The failover message RejectedExecutionException: Task
java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTas is reported when a
job is running. What do I do?
A: Dimension table joining in Blink 1.0 has some issues. We recommend that you upgrade
the Blink version to 2.1.1 or later. If you still want to use Blink 1.0, you must suspend your
job and then resume it. You can troubleshoot this issue based on the first error message in
the failover history.
Q: What do the endPoint and tunnelEndpoint parameters mean in the Alibaba Cloud public
cloud? What happens if the two parameters are incorrectly configured?
A: For more information about the endPoint and tunnelEndpoint parameters, see Endpoints.
If the configuration of these two parameters is incorrect in a VPC, one of the following task
exceptions may occur.

If the endPoint parameter is incorrectly configured, the task stops at a progress of 91%.
If the tunnelEndpoint parameter is incorrectly configured, the task fails.

Q: What do I do if the error message "ErrorMessage=Authorization Failed [4019], You have
NO privilege'ODPS:***'" appears when a job is running?
A: This error occurs because the user identity information specified in the MaxCompute
DDL statements cannot be used to access MaxCompute. Therefore, you must use an
Alibaba Cloud account, a RAM user, or a RAM role to authenticate the user identity. For
more information, see User authentication.

This topic describes how to create an ApsaraDB for Redis dimension table in Realtime
Compute for Apache Flink. It also describes the parameters in the WITH and CACHE clauses,
data type mapping, and sample code used when you create such a dimension table.

5.6.4.7. Create an ApsaraDB for Redis dimension
table

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

242 > Document Version: 20231114

https://www.alibabacloud.com/help/en/maxcompute/user-guide/endpoints
https://www.alibabacloud.com/help/en/maxcompute/user-guide/user-authentication

Important
This topic applies only to Blink 3.2.2 and later.
ApsaraDB for Redis dimension tables in Realtime Compute for Apache Flink can
only reference data of the STRING type in ApsaraDB for Redis databases.
ApsaraDB for Redis dimension tables in Realtime Compute for Apache Flink support
user-created Redis databases.

Syntax
In Realtime Compute for Apache Flink, you can create an ApsaraDB for Redis dimension table.
The following code shows an example:
CREATE TABLE white_list (
 id VARCHAR,
 name VARCHAR,
 PRIMARY KEY (id), -- The Row Key field in an ApsaraDB for Redis database.
 PERIOD FOR SYSTEM_TIME -- The identifier of a dimension table.
) WITH (
 type = 'redis',
 host = '<yourHostName>',
 port = '<yourPort>',
 password = '<yourPassword>',
 dbNum = '<yourDatabaseNumber>'
);

Note
Only one primary key can be declared for an ApsaraDB for Redis dimension table.
When you join a dimension table with another dimension table, the ON condition
must contain equivalent conditions of all the primary keys.
You can declare only two fields for an ApsaraDB for Redis dimension table, and the
fields must be of the VARCHAR type.

Parameters in the WITH clause
Parameter Description Required Remarks

type The type of the
dimension table. Yes Set the value to redis .

host
The endpoint of an
ApsaraDB for Redis
instance.

Yes None.

port
The port of the
ApsaraDB for Redis
database.

No Default value: 6379.

dbNum
The sequence
number of the
ApsaraDB for Redis
database.

No Default value: 0.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 243

password
The password that is
used to access the
ApsaraDB for Redis
database.

No
This parameter is empty by default, which
indicates that permission verification is not
required.

hashName The hash key name
in hash mode. No

This parameter is empty by default, which
indicates that Realtime Compute for Apache
Flink reads data of the STRING type from the
ApsaraDB for Redis database.
In typical cases, the data type in the Redis
dimension table is STRING, which is
represented as key-value pairs. If you
set the hashName parameter, data in the
ApsaraDB for Redis dimension table is of the
HASHMAP type, which is presented as key-
{field-value} pairs.

key is the value of the hashName
parameter.
field is the value of the key parameter
that you specify in the CREATE TABLE
statement.
value is the value assigned to key, which
has the same meaning as value in key-
value of the STRING type.

Parameters in the CACHE clause
Parameter Description Required Remarks

cache The policy for
caching data. No

Valid values:
None (default value): indicates that no data is
cached.
LRU: indicates that partial data in the
dimension table is cached. The system
searches the cache each time it receives a
data record. If the system does not find the
record in the cache, it searches for the data
record in the physical dimension table.
If this cache policy is used, you must configure
the cacheSize and cacheTTLMs parameters.

cacheSize

The
maximum
number of
data records
that can be
cached. Unit:
lines.

No
If you set the cache parameter to LRU , you
can set this parameter to specify the maximum
number of data records that can be cached.
Default value: 10000.

cacheTTLMs
The cache
timeout
period.

No
The cache does not expire by default. Unit:
milliseconds. If the cache policy is set to LRU, this
parameter specifies the time before the cache
expires.

cacheEmpty
Specifies
whether to
clear the
cache.

No Default value: true.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

244 > Document Version: 20231114

Field type mapping
The following table describes the mapping between ApsaraDB for Redis data types and data
types of Realtime Compute for Apache Flink. We recommend that you declare the mapping in
a DDL statement.

Data type of ApsaraDB for Redis Data type of Realtime Compute for Apache
Flink

STRING VARCHAR

Sample code
The following sample code demonstrates how to create an ApsaraDB for Redis dimension
table in a Realtime Compute for Apache Flink job.
CREATE TABLE event (
 id VARCHAR,
 data VARCHAR) with (
 type = 'random'
);

CREATE TABLE white_list (
 id VARCHAR,
 name VARCHAR,
 PRIMARY KEY (id), -- The Row Key field in an ApsaraDB for Redis database.
 PERIOD FOR SYSTEM_TIME -- The identifier of a dimension table.
) WITH (
 type = 'redis',
 host = '<yourRedisHost>',
 password = '<yourRedisPassword>'
);

SELECT e.*, w. *
FROM event AS e
JOIN white_list FOR SYSTEM_TIME AS OF PROCTIME() AS w
ON e.id = w.id;

This topic describes how to create an Elasticsearch dimension table in Realtime Compute for
Apache Flink. This topic also describes the parameters in the WITH clause and CACHE clauses
used when you create an Elasticsearch dimension table.

Important This topic applies only to Blink 3.2.2 and later.

DDL syntax
In Realtime Compute for Apache Flink, you can use an Elasticsearch table as a dimension
table. The following code shows an example:

5.6.4.8. Create an Elasticsearch dimension table

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 245

 CREATE TABLE es_stream_sink(
 field1 LONG,
 field2 VARBINARY,
 field3 VARCHAR,
 PRIMARY KEY(field1),
 PERIOD FOR SYSTEM_TIME
) WITH (
 type ='elasticsearch',
 endPoint = '<yourEndPoint>',
 accessId = '<yourUsername>',
 accessKey = '<yourPassword>',
 index = '<yourIndex>',
 typeName = '<yourTypeName>'
);

Note An Elasticsearch dimension table supports data updates based on the
primary key of an Elasticsearch cluster. You can specify only one field for the primary key
field.

Parameters in the WITH clause
Parameter Description Default value Required

type The type of the dimension table. elasticsearch Yes

endPoint
The endpoint of the Elasticsearch
cluster, for example,
http://127.0.0.1:9211.

No default value Yes

accessId The AccessKey ID that is used to
access the Elasticsearch cluster. No default value Yes

accessKey The AccessKey secret that is used to
access the Elasticsearch cluster. No default value Yes

index The index name, which is similar to the
database name. No default value Yes

typeName The type name, which is similar to the
database table name. No default value Yes

maxRetryTimes The maximum number of retries for
writing data to the table. 30 No

timeout The read timeout period. Unit:
milliseconds. 600000 No

discovery
Specifies whether node discovery is
enabled. If this feature is enabled, the
client refreshes the server list every 5
minutes.

false No

compression Specifies whether to compress request
bodies in the GZIP format. true No

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

246 > Document Version: 20231114

multiThread Specifies whether to enable
multithreading for JestClient. true No

Parameters in the CACHE clause
Parameter Description Remarks

cache The cache policy.

None: indicates that no data is cached. This
value is the default value.
LRU: indicates that only the specified data in
the dimension table is cached. The system
searches the cache each time it receives a
data record from the source table. If the
system does not find the record in the cache,
the system searches for the data record in the
physical dimension table.
If you use this cache policy, you must configure
the cacheSize and cacheTTLMs parameters.
ALL: indicates that all the data in the
dimension table is cached. Before Realtime
Compute for Apache Flink runs a job, Realtime
Compute for Apache Flink loads all the data in
the dimension table to the cache and then
searches the cache for all subsequent queries
in the dimension table. If the system does not
find the data record in the cache, the key does
not exist. The system reloads all data in the
cache after cache entries expire.

cacheSize The cache size.
You can specify this parameter only if you set the
cache parameter to LRU . Default value:
10000.

cacheTTLMs The interval at which
the cache is refreshed.

The cache does not time out by default. The
purpose of setting this parameter varies based
on the cache policy.

If the cache parameter is set to LRU, the
cacheTTLMs parameter specifies the timeout
period of the cache.
If the cache parameter is set to ALL, the
cacheTTLMs parameter specifies the interval at
which the cache is refreshed. The cache is not
refreshed by default.

This topic describes how to create a Phoenix5 dimension table in Realtime Compute for
Apache Flink. It also describes the parameters in the WITH and CACHE clauses used when you
create a Phoenix5 dimension table.

Important Only Blink versions later than Blink 3.4.0 support Phoenix5 dimension
tables.

Syntax

5.6.4.9. Create a Phoenix5 dimension table

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 247

create table US_POPULATION_DIM (
 `STATE` varchar,
 CITY varchar,
 POPULATION BIGINT,
 PRIMARY KEY (`STATE`, CITY),
 PERIOD FOR SYSTEM_TIME
) WITH (
 type = 'PHOENIX5',
 serverUrl = '<YourServerUrl>',
 tableName = '<YourTableName>'
);

Parameters in the WITH clause
Parameter Description Required Remarks

type The type of the dimension
table. Yes Set the value to PHOENIX5 .

serverUrl

The URL of the Phoenix5 query
server.

If Phoenix5 is created in a
cluster, the value of this
parameter is the URL of
Server Load Balancer (SLB).
If Phoenix5 is created on a
single server, the value of
this parameter is the URL of
the server.

Yes

You must enable the HBase SQL
service in an ApsaraDB for HBase
instance.
The value of the serverUrl
parameter is in the
http://host:port format. In the
format:

host: indicates the domain
name of the Phoenix5 service.
port: indicates the port number
of the Phoenix5 service. Set the
value to 8765.

tableName The name of the Phoenix5
table. Yes

The name of the Phoenix5 table is
in the SchemaName.TableName
format. In the format:

SchemaName: indicates the
schema name, which can be
empty. This means that the
schema name is not used and
only the table name is used. In
this case, the default schema
of the database is used.
TableName: indicates the name
of the table.

Parameters in the CACHE clause
Paramet
er Description Require

d Remarks

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

248 > Document Version: 20231114

cache The cache policy. No

Valid values:
None: indicates that no data is cached. This is
the default value.
LRU: indicates that only the specified data in
the dimension table is cached. The system
searches the cache each time it receives a
data record. If the system does not find the
record in the cache, it searches for the data
record in the physical dimension table.
If this cache policy is used, you must configure
the cacheSize and cacheTTLMs parameters.
ALL: indicates that all the data in the
dimension table is cached. Before Realtime
Compute for Apache Flink runs a job, Realtime
Compute for Apache Flink loads all the data in
the dimension table to the cache and then
searches the cache for all subsequent queries
in the dimension table. If the system does not
find the data record in the cache, the join key
does not exist. The system reloads all data in
the cache after cache entries expire.
If the data amount of a remote table is small
and a large number of missing keys exist, we
recommend that you set this parameter to ALL.
(The source table and dimension table cannot
be associated based on the ON clause.)
If you use this cache policy, you must configure
the cacheSize and cacheTTLMs parameters.

Note If you set the cache parameter
to ALL, you must increase the memory of the
node for joining tables because Realtime
Compute for Apache Flink asynchronously
loads data from the dimension table. The
increased memory size is twice that of the
remote table.

cacheSiz
e

The maximum number
of data records that
can be cached.

No
This parameter is available only if you set the
cache parameter to LRU. Default value: 10000.
Unit: rows.

cacheTTL
Ms

The cache timeout
period. Unit:
milliseconds.

No

If the cache parameter is set to LRU, the
cacheTTLMs parameter specifies the time allowed
before cache entries expire. Cache entries do not
expire by default. If the cache parameter is set to
ALL, the cacheTTLMs parameter specifies the
interval at which the cache is loaded. The cache
is not reloaded by default.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 249

cacheRel
oadTime
BlackList

The time periods
during which the
cache is not refreshed.
This parameter takes
effect when the cache
parameter is set to
ALL. The cache is not
refreshed during the
time periods that you
specify for this
parameter. This
parameter is useful for
large-scale online
promotional events
such as Double 11.

No

This parameter is optional. It is empty by default.
For example, you can set this parameter to
'2017-10-24 14:00 -> 2017-10-24 15:00,
2017-11-10 23:30 -> 2017-11-11 08:00'.
Multiple time periods are separated by commas
(,). The start time and end time of each time
period are separated with a hyphen and a
greater-than sign (->).

Sample code
CREATE TABLE datahub_input1 (
 id BIGINT,
 name VARCHAR,
 age BIGINT
) WITH (
 type='datahub'
);

create table phoneNumber(
 name VARCHAR,
 phoneNumber BIGINT,
 primary key(name),
 PERIOD FOR SYSTEM_TIME--Define the change period of the dimension table.
)with(
 type='PHOENIX5'
);

CREATE table result_infor(
 id BIGINT,
 phoneNumber BIGINT,
 name VARCHAR
)with(
 type='rds'
);

INSERT INTO result_infor
SELECT
 t.id,
 w.phoneNumber,
 t.name
FROM datahub_input1 as t
JOIN phoneNumber FOR SYSTEM_TIME AS OF PROCTIME() as w -- You must include this clause
in the INSERT INTO statement if you are performing a JOIN operation on the dimension ta
ble.
ON t.name = w.name;

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

250 > Document Version: 20231114

This topic describes how to create an AnalyticDB for MySQL V3.0 dimension table. This topic
also describes the parameters in the WITH clause and cache parameters used when you
create an AnalyticDB for MySQL V3.0 dimension table.

Important This topic applies only to Blink-3.5.0-hotfix and later.

DDL syntax
CREATE TABLE dim_ads(
 `name` VARCHAR,
 id VARCHAR,
 PRIMARY KEY (`name`),
 PERIOD FOR SYSTEM_TIME
)with(
 type='ADB30',
 url='jdbc:mysql://<Internal endpoint>/<databaseName>',
 tableName='xxx',
 userName='xxx',
 password='xxx'
);

Note
You must specify a primary key when you declare a dimension table.
When you join a dimension table with another table, the ON condition must contain
equality conditions that include all primary keys.
The primary key of an AnalyticDB for MySQL database can be defined as the
primary key or unique index column of an AnalyticDB for MySQL dimension table.

Parameters in the WITH clause
Parameter Description Required Remarks

type
The type of
the
dimension
table.

Yes Set the value to ADB30.

5.6.4.10. Create an AnalyticDB for MySQL V3.0
dimension table

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 251

url

The URL of
the
AnalyticDB
for MySQL
database.

Yes

The URL of the AnalyticDB for MySQL database,
such as
 url='jdbc:mysql://databaseName****-cn-
shenzhen-
a.ads.aliyuncs.com:10014/databaseName' .

Note
For more information about how to
access an AnalyticDB for MySQL
database, see Register an AnalyticDB
for MySQL instance.
databaseName indicates the name of
the AnalyticDB for MySQL database.

tableName The name of
the table. Yes N/A.

userName

The
username
that is used
to access the
AnalyticDB
for MySQL
database.

Yes N/A.

password

The password
that is used
to access the
AnalyticDB
for MySQL
database.

Yes N/A.

maxRetryTim
es

The
maximum
number of
retries for
writing data
to the table.

No Default value: 3.

Cache parameters

Paramet
er Description

Req
uire
d

Remarks

Valid values:
None: indicates that data is not cached. This is
the default cache policy.
LRU: indicates that only the specified data in the
dimension table is cached. The system searches
the cache each time it receives a data record
from the source table. If the system does not find
the record in the cache, the system searches for
the data record in the physical dimension table.
If this cache policy is used, you must configure
the cacheSize and cacheTTLMs parameters.
ALL: indicates that all the data in the dimension
table is cached. Before the system runs a job, the
system loads all data in the dimension table to

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

252 > Document Version: 20231114

cache The policy that is used
to cache data. No

the cache. This way, the cache is searched for all
subsequent queries in the dimension table. If the
system does not find the data record in the
cache, the join key does not exist. The system
reloads all data in the cache after cache entries
expire.
If the amount of data in a remote table is small
and a large number of missing keys exist, we
recommend that you set this parameter to ALL.
The source table and dimension table cannot be
associated based on the ON clause.
If you use this cache policy, you must configure
the cacheTTLMs and cacheReloadTimeBlackList
parameters.

Note
If you set the cache parameter to ALL,
you must increase the memory of the
node for joining tables because the
system asynchronously loads data from
the dimension table. The increased
memory size is twice the memory size
of the remote table.
If a dimension table stores a large
volume of data and the cache
parameter is set to ALL, an out of
memory (OOM) error may occur or a full
garbage collection (GC) may be time-
consuming. To address this issue, you
can use one of the following methods:

If the cache parameter can be
set to ALL for a dimension table,
enable the partitionedJoin
feature. For a Blink version
earlier than Blink 3.6.0, the full
data of the dimension table is
loaded for each concurrent job
by default. For a Blink version
later than Blink 3.6.0, the
partitionedJoin feature is
available if you set the cache
parameter to ALL. After you
enable the partitionedJoin
feature, only the required data is
cached for each concurrent job.
Use an ApsaraDB for HBase or
ApsaraDB RDS dimension table
that uses key-value pairs to store
data.

cacheSize
The maximum number
of rows of data records
that can be cached.

No This parameter is available only if you set the cache
parameter to LRU. Default value: 10000.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 253

cacheTTL
Ms

The interval at which
the system refreshes
the cache. The system
reloads the latest data
in the dimension table
based on the value of
this parameter. This
ensures that the data in
the source table is
associated with the
latest data in the
dimension table.

No
Unit: milliseconds. This parameter is empty by
default. This indicates that the updates in the
dimension table are not reloaded.

cacheRelo
adTimeBl
ackList

The periods of time
during which cache is
not refreshed. This
parameter takes effect
when the cache
parameter is set to ALL.
The cache is not
refreshed during the
time periods that you
specify for this
parameter. This
parameter is useful for
large-scale online
promotional events
such as Double 11.

No

This parameter is optional. This parameter is empty
by default. For example, you can specify this
parameter as '2017-10-24 14:00 -> 2017-10-24
15:00, 2017-11-10 23:30 -> 2017-11-11 08:00'.
Use the following delimiters to separate time
periods:

Separate multiple time periods with commas (,).
Separate the start time and end time of each time
period with a hyphen and a greater-than sign (-
>).

partitione
dJoin

Specifies whether to
enable the
partitionedJoin feature.
If the partitionedJoin
feature is enabled,
shuffling is
implemented based on
join keys before the
primary table is joined
with the dimension
table. This process
provides the following
benefits:

If you set the cache
parameter to LRU, the
cache hit rate
increases.
If you set the cache
parameter to ALL,
memory resources
are reduced because
only the required
data is cached for
each concurrent job.

No

The default value of this parameter is false. This
indicates that the partitionedJoin feature is disabled.

Note Before you enable the
partitionedJoin feature, set partitionedJoin to
true.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

254 > Document Version: 20231114

maxJoinR
ows

The maximum number
of results that are
returned each time a
data record in the
primary table is queried
and matched with data
records in the
dimension table.

No

Default value: 1024. If you can estimate that a data
record in the primary table corresponds to a
maximum of n data records in the dimension table,
you can set the maxJoinRows to n to ensure
efficient matching in Realtime Compute for Apache
Flink.

Note When you join a dimension table
with another table, this parameter specifies the
maximum number of results that can be
returned after a data record in the primary
table is matched with data records in the
dimension table.

Sample code
CREATE TABLE datahub_input1 (
 id BIGINT,
 name VARCHAR,
 age BIGINT
) WITH (
 type='datahub'
);

create table phoneNumber (
 name VARCHAR,
 phoneNumber BIGINT,
 primary key(name),
 PERIOD FOR SYSTEM_TIME--The identifier of a dimension table.
) with (
 type='ADB30'
);

CREATE table result_infor (
 id BIGINT,
 phoneNumber BIGINT,
 name VARCHAR
) with (
 type='rds'
);

INSERT INTO result_infor
SELECT
 t.id,
 w.phoneNumber,
 t.name
FROM datahub_input1 as t
JOIN phoneNumber FOR SYSTEM_TIME AS OF PROCTIME() as w -- You must include this clause
when you perform a JOIN operation on the dimension table.
ON t.name = w.name;

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 255

This topic describes how to create an Oracle database dimension table in Realtime Compute
for Apache Flink. This topic also describes the parameters in the WITH clause, field type
mappings, and attribute fields used when you create an Oracle database dimension table.

DDL syntax
CREATE TABLE oracle_dim(
 employee_id BIGINT,
 phone_number BIGINT,
 dollar DOUBLE,
 PRIMARY KEY (employee_id)
) WITH (
 type = 'oracle_dim',
 url = '<yourUrl>',
 userName = '<yourUserName>',
 password = '<yourPassword>',
 tableName = '<yourTableName>',
 cache = 'ALL'
);

Parameters in the WITH clause
Parameter Description Required Example

type The type of the
dimension table. Yes Set the value to oracle_dim.

url
The Java Database
Connectivity (JDBC)
URL of the Oracle
database.

Yes jdbc:oracle:thin:@ip:port:sid

userName
The username that
is used to access
the database.

Yes None.

password
The password that
is used to access
the database.

Yes None.

tableName The name of the
table. Yes None.

maxRetryTim
es

The maximum
number of retries
for reading data
from the dimension
table.

No Default value: 10.

Parameters in the CACHE clause

5.6.4.11. Create an Oracle database dimension
table

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

256 > Document Version: 20231114

Parameter Description Required Example

cache The cache policy. No

Valid values:
None: indicates that no data is cached.
This is the default value.
LRU: indicates that only the specified
data in the dimension table is cached.
The system searches the cache each
time it receives a data record. If the
system does not find the record in the
cache, it searches for the data record in
the physical dimension table.
If you use this cache policy, you must
configure the cacheSize and cacheTTLMs
parameters.
ALL: indicates that all the data in the
dimension table is cached. Before
Realtime Compute for Apache Flink runs
a job, Realtime Compute for Apache Flink
loads all the data in the dimension table
to the cache and then searches the
cache for all subsequent queries in the
dimension table. If the system does not
find the data record in the cache, the key
does not exist. The system reloads all
data in the cache after cache entries
expire.
If the amount of data of a remote table is
small and a large number of missing
keys exist, we recommend that you set
this parameter to ALL. (The source table
and dimension table cannot be
associated based on the ON clause.)
If you use this cache policy, you must
configure the cacheSize and cacheTTLMs
parameters.

Note If the cache parameter
is set to ALL, the memory of the
node for joining tables must be
increased because Realtime
Compute for Apache Flink
asynchronously loads data from the
dimension table. The increased
memory size is two times that of the
remote table.

cacheSize

The cache size,
which specifies the
number of rows of
data that can be
cached.

No
You can set this parameter only after you
set the cache parameter to LRU. Default
value: 10000.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 257

cacheTTLMs
The cache timeout
period. Unit:
milliseconds.

No

You can set this parameter only if you
set the cache parameter to LRU. By
default, the cached data does not expire.
If the cache parameter is set to ALL, the
cacheTTLMs parameter specifies the
interval at which Realtime Compute for
Apache Flink refreshes the cache. The
cache is not refreshed by default.

cacheReloadTi
meBlackList

The time periods
during which the
cache is not
refreshed. This
parameter takes
effect when the
cache parameter is
set to ALL. The
cache is not
refreshed during
the time periods
that you specify for
this parameter.
This parameter is
useful for large-
scale online
promotional events
such as Double 11.

No

This parameter is empty by default. Format
of the parameter value: '2017-10-24
14:00 -> 2017-10-24 15:00, 2017-11-
10 23:30 -> 2017-11-11 08:00'. Take
note of the following points when you use
delimiters:

Separate time periods with commas (,).
Separate the start time and end time of
each time period with a hyphen and a
greater-than sign (->).

maxJoinRows

The maximum
number of records
in the right table
that are connected
to a record in the
left table in a one-
to-many join.

No

Default value: 1024.

Note If a large number of
records are connected to a record in a
one-to-many join, the cache memory
needs to be adjusted. The cacheSize
parameter limits the number of keys in
the left table. If a single record in the
left table corresponds to a large
number of records in the right table,
the performance of streaming tasks
may be significantly affected.

Field type mapping

Data type of Oracle database Data type of Realtime Compute for Apache
Flink

CHAR
VARCHAR
VARCHAR2

VARCHAR

FLOAT DOUBLE

NUMBER BIGINT

DECIMAL DECIMAL

Sample code

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

258 > Document Version: 20231114

CREATE TABLE oracle_source (
 employee_id BIGINT,
 employee_name VARCHAR,
 employee_age INT
) WITH (
 type ='random'
);

CREATE TABLE oracle_dim (
 employee_id BIGINT,
 phone_number BIGINT,
 dollar DOUBLE,
 PRIMARY KEY (employee_id)
) WITH (
 type = 'oracle_dim',
 url = '<yourUrl>',
 userName = '<yourUserName>',
 password = '<yourPassword>',
 tableName = '<yourTableName>',
 cache = 'ALL'
);

CREATE TEMPORARY TABLE oracle_sink (
 employee_id BIGINT,
 phone_number BIGINT,
 employee_name VARCHAR
) WITH (
 type = 'oracle',
 url = '<yourUrl>',
 userName = '<yourUserName>',
 password = '<yourPassword>',
 tableName = '<yourTableName>'
);

INSERT INTO oracle_sink
SELECT t.employee_id, w.phone_number, t.employee_name
FROM oracle_source as t JOIN oracle_dim FOR SYSTEM_TIME AS OF PROCTIME() as w
ON t.employee_id = w.employee_id;

You can execute EMIT statements to define different output policies for a query in different
scenarios. This allows you to control delays and improves data accuracy.

Important Only Realtime Compute for Apache Flink V2.0.0 and later support EMIT
statements.

Limits

5.7. DML statement
5.7.1. EMIT statements

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 259

Only tumbling and sliding windows support EMIT policies. Session windows do not support
EMIT policies.
If a job has multiple outputs, you must define the same EMIT policy for the outputs. You will
be able to define different EMIT policies for the outputs in the future.
The EMIT syntax cannot be used to set the allowLateness parameter for minibatch. You will
be able to declare allowLateness in EMIT policies in the future.

EMIT policies
An EMIT policy is an output policy for a query in a specific scenario of Flink SQL. For example,
an output policy may specify the maximum delay for outputs. The traditional ANSI SQL syntax
does not support the output policies of this type. Assume that you want to view the latest
result every minute before a 1-hour window ends and do not want to lose the data that
arrives within one day after the window ends. If the collected statistics do not change before
the window ends, the output result is not updated. If the collected statics change before the
window ends, the output result is updated.
Based on this scenario, Realtime Compute for Apache Flink introduces the EMIT syntax and
extends SQL statements with the EMIT syntax. In the following example, EMIT policies are
defined for different scenarios:

Before a window ends, results are generated with a 1-minute delay. After the window ends,
results are generated without delays.

EMIT
 WITH DELAY '1'MINUTE BEFORE WATERMARK,
 WITHOUT DELAY AFTER WATERMARK

Before a window ends, no result is generated. After the window ends, results are generated
without delays.

EMIT WITHOUT DELAY AFTER WATERMARK

Results are generated with a 1-minute delay. You can set the minibatch parameter to
increase the delay.

EMIT WITH DELAY '1'MINUTE

Before the window ends, results are generated with a 1-minute delay.

EMIT WITH DELAY '1'MINUTE BEFORE WATERMARK

Usage
The EMIT syntax offer the following features:

Controls delays. You can set the output frequency before the window ends to decrease the
delay of displaying results.
Improves data accuracy. The system does not discard the data that arrives late. This
ensures the accuracy of outputs.

Note When you specify an EMIT policy, you must balance between business
complexity and resource consumption. A lower output delay and a higher data accuracy
require a higher computing overhead.

Syntax
You can use the EMIT syntax in the INSERT INTO statement to define a policy for outputs. If
you do not use the EMIT syntax in the INSERT INTO statement, the default setting takes
effect. By default, a window generates a result only when the window ends. A watermark is

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

260 > Document Version: 20231114

triggered when the window ends.

Note You can append an EMIT statement only to the end of the query statements
in the INSERT INTO statement. You cannot include an EMIT statement in a VIEW
statement.

INSERT INTO tableName
<Query>
EMIT strategy [, strategy]*

strategy ::= {WITH DELAY timeInterval | WITHOUT DELAY}
 [BEFORE WATERMARK |AFTER WATERMARK]

timeInterval ::='string' timeUnit

Parameter Description

 WITH DELAY Specifies the maximum output delay. Results are generated at the
specified interval.

 WITHOUT DELAY Specifies that no delay is allowed. A result is immediately
generated after each data record arrives.

 BEFORE WATERMARK Specifies the policy that is used before a window ends. A
watermark is triggered when a window ends.

 AFTER WATERMARK

Specifies the policy that is used after a window ends. A watermark
is triggered when a window ends.

Note If you configure the AFTER WATERMARK policy,
you must explicitly declare the blink.state.ttl.ms
parameter to specify the maximum delay.

You can use the following strategy settings:
Set it to one BEFORE policy.
Set it to one AFTER policy.
Set it to one BEFORE policy and one AFTER policy.

Note You cannot define two BEFORE policies or two AFTER policies at the same
time for strategy .

TTL
If the AFTER WATERMARK policy is configured, the information about the window state is
retained for a specified period to wait for late data. The retention period is called time to live
(TTL). After the AFTER policy is applied, you can explicitly declare the blink.state.ttl.ms
parameter to set the TTL for the information about the window state. For example,
 blink.state.ttl.ms = 3600000 means that the window can wait for late data for up to 1
hour. The data that arrives more than 1 hour late is discarded.

Examples
A 1-hour tumbling window is used as an example. The following code block describes the
 tumble_window syntax:

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 261

CREATE VIEW tumble_window AS
SELECT
 `id`,
 TUMBLE_START(rowtime, INTERVAL '1' HOUR) as start_time,
 COUNT(*) as cnt
FROM source
GROUP BY `id`, TUMBLE(rowtime, INTERVAL '1' HOUR);

By default, you must wait for 1 hour before you can obtain the tumble_window result. If you
need to view the latest result of the window every minute even if the result is incomplete, you
can execute the following statements:
INSERT INTO result
SELECT * FROM tumble_window
EMIT WITH DELAY '1' MINUTE BEFORE WATERMARK; --Before the window ends, the updated resu
lt is generated at 1-minute intervals.

By default, tumble_window ignores and discards the data that arrives after the window ends.
In some scenarios, you may want the outputs to include the data that arrives one day after
the window ends. You may also want the results to be immediately updated after each data
record is received. To meet these requirements, you can execute the following statements:
INSERT INTO result
SELECT * FROM tumble_window
EMIT WITH DELAY '1' MINUTE BEFORE WATERMARK,
 WITHOUT DELAY AFTER WATERMARK; --After the window ends, updated results are
immediately generated after a data record is received.

In addition, you must set blink.state.ttl.ms to 86400000 in the job parameters. This value
indicates that the window can wait for late data for up to one day.

Delay
In an EMIT policy, DELAY specifies the maximum allowed duration. The duration starts from
the time when your data flows into Realtime Compute for Apache Flink and ends at the time
when you obtain the result data. The end time is an event time or a processing time. A delay
is calculated based on the system time. The delay is the interval between the time when data
changes in a dynamic table and the time when a new data record is displayed in a result
table. The dynamic table stores streaming data in Realtime Compute for Apache Flink. The
result table is referenced by Realtime Compute for Apache Flink and is stored in an external
data store.
If the processing time in Realtime Compute for Apache Flink is 0, a delay may occur when
streaming data accumulates and when a window waits for data. If you specify a maximum
delay of 30 seconds, streaming data can be accumulated during the 30 seconds. If a 1-hour
window is specified in a query, a maximum delay of 30 seconds indicates that the output
results are updated every 30 seconds.

Use the configuration EMIT WITH DELAY '1' MINUTE as an example.
When you use the GROUP BY clause to aggregate data, the system accumulates streaming
data within 1 minute. For a window whose size is greater than 1 minute, the window
generates a result every 1 minute. If the size of the window is less than 1 minute, the
system ignores this configuration. This is because watermarks can be used to meet the
delay requirements in the service level agreement (SLA) for window outputs.
Use the configuration EMIT WITHOUT DELAY as an example.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

262 > Document Version: 20231114

When you use the GROUP BY clause to aggregate data, the system does not use the
minibatch parameter to increase the delay. Each data record is immediately processed
after it is received. The processing result is also immediately generated. When you use
window functions, each data record is immediately processed after it is received. The
processing result is also immediately generated.

This topic describes the method and limits of executing INSERT INTO statements in Realtime
Compute for Apache Flink.

Operation limits
Table type Limit

Source table Can be referenced in only FROM clauses and does not support
INSERT statements.

Dimension table Can be referenced in only JOIN statements and does not support
INSERT statements.

Result table Supports only INSERT statements.

View Can be referenced in only FROM clauses.

Syntax
INSERT INTO tableName
[(columnName[, columnName]*)]
queryStatement;

Examples
INSERT INTO LargeOrders
SELECT * FROM Orders WHERE units > 1000;

INSERT INTO Orders(z,v)
SELECT c,d FROM OO;

Note
In Realtime Compute for Apache Flink, a single SQL job can contain multiple data
manipulation language (DML) operations, data sources, data destinations, and
dimension tables. For example, a job file can contain two snippets of SQL
statements for independent services. You can execute the SQL statements to write
data to different data destinations.
Realtime Compute for Apache Flink does not allow you to execute a separate
SELECT statement to query data. To execute a SELECT statement, you must include
the SELECT statement in a CREATE VIEW or an INSERT INTO statement.
You can execute an INSERT INTO statement to update an existing record. For
example, you can insert a key value into an ApsaraDB for RDS result table that
contains a primary key. If the key value already exists, the existing record is
updated. If the key value does not exist, a new key value is inserted.

5.7.2. INSERT INTO statements

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 263

You can execute SELECT statements to retrieve data from tables.

Syntax
SELECT [DISTINCT]
{ * | projectItem [, projectItem]* }
FROM tableExpression;

Test data
a (VARCHAR) b (INT) c (DATE)

a1 211 1990-02-20

b1 120 2018-05-12

c1 89 2010-06-14

a1 46 2016-04-05

Simple queries
Test statement

SELECT * FROM <Table name>;

Test result

a (VARCHAR) b (INT) c (DATE)

a1 211 1990-02-20

b1 120 2018-05-12

c1 89 2010-06-14

a1 46 2016-04-05

Rename objects
Test statement

SELECT a, c AS d FROM <Table name>;

Test result

a (VARCHAR) d (DATE)

a1 1990-02-20

b1 2018-05-12

5.8. Query statements
5.8.1. SELECT statements

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

264 > Document Version: 20231114

c1 2010-06-14

a1 2016-04-05

Deduplication queries
Test statement

SELECT DISTINCT a FROM Table name;

Test result

a (VARCHAR)

a1

b1

c1

Subqueries
In most cases, SELECT statements read data from tables, for example, SELECT column_1,
column_2 … FROM table_name . SELECT statements can also read data from the results of other
SELECT statements. This is known as subqueries.

Note You must specify aliases in subqueries.

Test statement

INSERT INTO result_table
SELECT * FROM
 (SELECT t.a,
 sum(t.b) AS sum_b
 FROM t1 t
 GROUP BY t.a
) t1
WHERE t1.sum_b > 100;

Test result

a (VARCHAR) b (INT)

a1 211

b1 120

a1 257

Note The preceding test result is a debugging result. In the result, you can view
the computing process. If your job is published and the result table is stored in
DataHub, Alibaba Cloud Message Queue for Apache Kafka, or Alibaba Cloud Message
Queue, the computing process is displayed. If your job is published and the result table
is stored in a relational database such as ApsaraDB RDS, the records that have the
same primary key values are combined into one record.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 265

A WHERE clause filters data returned by a SELECT statement.

Syntax
SELECT [ALL | DISTINCT]
{ * | projectItem [, projectItem]* }
FROM tableExpression
[WHERE booleanExpression];

The following table describes the operators that can be used in a WHERE clause.

Operator Description

= Equal to

<> Not equal to

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

Example
Test data

Address City

Oxford Street Beijing

Fifth Avenue Beijing

Changan Street Shanghai

Test statements

SELECT * FROM XXXX WHERE City='Beijing';

Test results

5.8.2. WHERE

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

266 > Document Version: 20231114

Address City

Oxford Street Beijing

Fifth Avenue Beijing

When using an aggregate function, you need to add a HAVING statement to achieve the same
filtering effect as a WHERE statement.

Syntax
 SELECT [ALL | DISTINCT]{ * | projectItem [, projectItem]* }
 FROM tableExpression
 [WHERE booleanExpression]
 [GROUP BY { groupItem [, groupItem]* }]
 [HAVING booleanExpression];

Example
Test data

Customer OrderPrice

Bush 1000

Carter 1600

Bush 700

Bush 300

Adams 2000

Carter 100

Test statement

SELECT Customer,SUM(OrderPrice) FROM XXX
GROUP BY Customer
HAVING SUM(OrderPrice)<2000;

Test result

Customer SUM(OrderPrice)

Carter 1700

5.8.3. HAVING statement

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 267

A GROUP BY statement groups a result set by one or more columns.

Syntax
SELECT [DISTINCT]
{ * | projectItem [, projectItem]* }
FROM tableExpression
[GROUP BY { groupItem [, groupItem]* }];

Example
Test data

Customer OrderPrice

Bush 1000

Carter 1600

Bush 700

Bush 300

Adams 2000

Carter 100

Test statement

SELECT Customer,SUM(OrderPrice) FROM xxx
GROUP BY Customer;

Test result

Customer SUM(OrderPrice)

Bush 2000

Carter 1700

Adams 2000

JOIN statements in Realtime Compute for Apache Flink have the same semantic meanings as
those for batch processing. The two types of JOIN statements allow you to join two tables. The
difference is that each JOIN statement in Realtime Compute for Apache Flink joins two
dynamic tables. The join results are dynamically updated to ensure that the final results are
the same as the corresponding results of batch processing.

Syntax

5.8.4. GROUP BY statement

5.8.5. JOIN statements

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

268 > Document Version: 20231114

tableReference [, tableReference]* | tableexpression
[LEFT] JOIN tableexpression [joinCondition];

tableReference: specifies the table name.
tableexpression: specifies the expression.
joinCondition: specifies the join condition.

Important
Only EQUI JOIN operations are supported.
Only INNER JOIN and LEFT OUTER JOIN operations are supported.

Example 1: Join the Orders table and the Products table
Test data Table 1. Orders

rowtime productId orderId units

 10:17:00 30 5 4

 10:17:05 10 6 1

 10:18:05 20 7 2

 10:18:07 30 8 20

 11:02:00 10 9 6

 11:04:00 10 10 1

 11:09:30 40 11 12

 11:24:11 10 12 4

Table 2. Products

productId name unitPrice

30 Cheese 17

10 Beer 0.25

20 Wine 6

30 Cheese 17

10 Beer 0.25

10 Beer 0.25

40 Bread 100

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 269

10 Beer 0.25

Test statement

 SELECT o.rowtime, o.productId, o.orderId, o.units,p.name, p.unitPrice
 FROM Orders AS o
 JOIN Products AS p
 ON o.productId = p.productId;

Test result

o.rowtime o.productId o.orderId o.units p.name p.unitPrice

 10:17:00 30 5 4 Cheese 17

 10:17:05 10 6 1 Beer 0.25

 10:18:05 20 7 2 Wine 6

 10:18:07 30 8 20 Cheese 17

 11:02:00 10 9 6 Beer 0.25

 11:04:00 10 10 1 Beer 0.25

 11:09:30 40 11 12 Bread 100

 11:24:11 10 12 4 Beer 0.25

Example 2: Join the datahub_stream1 table and the
datahub_stream2 table

Test data Table 3. datahub_stream1

a (BIGINT) b (BIGINT) c (VARCHAR)

0 10 test11

1 10 test21

Table 4. datahub_stream2

a (BIGINT) b (BIGINT) c (VARCHAR)

0 10 test11

1 10 test21

0 10 test31

1 10 test41

Test statement

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

270 > Document Version: 20231114

SELECT s1.c,s2.c
FROM datahub_stream1 AS s1
JOIN datahub_stream2 AS s2
ON s1.a =s2.a
WHERE s1.a = 0;

Test result

s1.c (VARCHAR) s2.c (VARCHAR)

test11 test11

test11 test31

In Realtime Compute for Apache Flink, each data stream can be associated with a dimension
table that is stored in an external data source. This allows you to perform associated queries
in Realtime Compute for Apache Flink.

Note A dimension table constantly changes. Therefore, when you associate a data
stream with a dimension table, you must specify the time of the dimension table snapshot
with which the data stream is associated. A data stream can be associated only with the
dimension table snapshot that is taken at the current time. In the future, Realtime
Compute for Apache Flink will allow you to associate data streams with dimension table
snapshots that are taken at different points in time. The points in time are specified by
the rowtime field in the left table. For more information about dimension tables, see
Overview.

Syntax
SELECT column-names
FROM table1 [AS <alias1>]
[LEFT] JOIN table2 FOR SYSTEM_TIME AS OF PROCTIME() [AS <alias2>]
ON table1.column-name1 = table2.key-name1;

The following example shows an event stream that is joined with a whitelist dimension table.
SELECT e.*, w.*
FROM event AS e
JOIN white_list FOR SYSTEM_TIME AS OF PROCTIME() AS w
ON e.id = w.id;

5.8.6. JOIN statements for dimension tables

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 271

Note
Dimension tables support INNER JOIN and LEFT JOIN operations, and do not
support RIGHT JOIN or FULL JOIN operations.
You must append FOR SYSTEM_TIME AS OF PROCTIME() to the end of the dimension
table. This way, each data record in the dimension table that can be viewed at the
current time is associated with the source data.
The subsequent input data in the source table is associated only with the latest
records that are stored in the dimension table at the current time. This means that
the JOIN operation is performed only at the processing time. Therefore, if the data
in the dimension table is added, updated, or deleted after the JOIN operation is
performed, the associated data remains unchanged.
The ON clause must contain equivalent (=) conditions for all primary key fields of
the dimension table. The primary key fields in the conditions must be the same as
those in the physical tables that are referenced in the SQL statement. The ON
clause can also contain other equivalent (=) conditions.
If you want to perform one-to-many table joins, you must specify the join keys in
the data definition language (DDL) INDEX syntax for dimension tables. For more
information, see INDEX syntax.
Two dimension tables cannot be joined.
In the join conditions that are specified in the ON clause, the fields in the
dimension table cannot use type conversion functions, such as CAST. If you need to
convert data types, perform the conversion on the fields in the source table.

Example
Test data Table 1. datahub_input1

id (BIGINT) name (VARCHAR) age (BIGINT)

1 lilei 22

2 hanmeimei 20

3 libai 28

Table 2. phoneNumber

name (VARCHAR) phoneNumber (BIGINT)

dufu 13900001111

baijuyi 13900002222

libai 13900003333

lilei 13900004444

Test statements

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

272 > Document Version: 20231114

CREATE TABLE datahub_input1 (
id BIGINT,
name VARCHAR,
age BIGINT
) WITH (
type='datahub'
);

create table phoneNumber(
name VARCHAR,
phoneNumber bigint,
primary key(name),
PERIOD FOR SYSTEM_TIME
)with(
type='rds'
);

CREATE table result_infor(
id bigint,
phoneNumber bigint,
name VARCHAR
)with(
type='rds'
);

INSERT INTO result_infor
SELECT
t.id,
w.phoneNumber,
t.name
FROM datahub_input1 as t
JOIN phoneNumber FOR SYSTEM_TIME AS OF PROCTIME() as w
ON t.name = w.name;

Test results

id (BIGINT) phoneNumber (BIGINT) name (VARCHAR)

1 13900004444 lilei

3 13900003333 libai

The IntervalJoin statement allows two streams to be joined. During the JOIN operation, each
record in the left and right streams is associated with only data generated at the same time
in the other stream. After the streams are joined, the time column in the input stream is still
retained for you to continue to perform operations based on the event time.

Syntax

5.8.7. IntervalJoin statement

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 273

SELECT column-names
FROM table1 [AS <alias1>]
[INNER | LEFT | RIGHT |FULL] JOIN table2
ON table1.column-name1 = table2.key-name1 AND TIMEBOUND_EXPRESSION

Note
INNER JOIN, LEFT JOIN, RIGHT JOIN, and FULL JOIN are supported. If you use JOIN
directly, INNER JOIN is automatically used.
SEMI JOIN or ANTI JOIN is not supported.
TIMEBOUND_EXPRESSION is an interval conditional expression on the columns of
the time attributes of the left and right streams. The following conditional
expressions are supported:

ltime = rtime
ltime >= rtime AND ltime < rtime + INTERVAL '10' MINUTE
ltime BETWEEN rtime - INTERVAL '10' SECOND AND rtime +
INTERVAL '5' SECOND

Example 1 (Event time-based)
This example shows the statistics on the logistics information within 4 hours after orders are
placed.

Test data
Order table (orders)

id productName orderTime

1 iphone 2020-04-01 10:00:00.0

2 mac 2020-04-01 10:02:00.0

3 huawei 2020-04-01 10:03:00.0

4 pad 2020-04-01 10:05:00.0

Logistics table (shipments)

shipId orderId status shiptime

0 1 shipped 2020-04-01
11:00:00.0

1 2 delivered 2020-04-01
17:00:00.0

2 3 shipped 2020-04-01
12:00:00.0

3 4 shipped 2020-04-01
11:30:00.0

Test statements

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

274 > Document Version: 20231114

CREATE TABLE Orders(
 id BIGINT,
 productName VARCHAR,
 orderTime TIMESTAMP,
 WATERMARK wk FOR orderTime as withOffset(orderTime, 2000) --Define a watermark for
the rowtime.
) WITH (
) WITH (
 type='datahub',
 endpoint='<yourEndpoint>',
 accessId='<yourAccessID>',
 accessKey='<yourAccessSecret>',
 projectName='<yourProjectName>',
 topic='<yourTopic>',
 project='<yourProjectName>'
);

CREATE TABLE Shipments(
 shipId BIGINT,
 orderId BIGINT,
 status VARCHAR,
 shiptime TIMESTAMP,
 WATERMARK wk FOR ts as withOffset(shiptime, 2000) --Define a watermark for the rowt
ime.
) WITH (
 type='datahub',
 endpoint='<yourEndpoint>',
 accessId='<yourAccessID>',
 accessKey='<yourAccessSecret>',
 projectName='<yourProjectName>',
 topic='<yourTopic>',
 project='<yourProjectName>'
);

--Create an ApsaraDB RDS result table.
CREATE TABLE rds_output(
 id BIGINT,
 productName VARCHAR,
 status VARCHAR
) WITH (
 type='rds',
 url='<yourDatabaseURL>',
 tableName='<yourDatabaseTablename>',
 userName='<yourDatabaseUserName>',
 password='<yourDatabasePassword>'
);

INSERT INTO rds_output
SELECT id, productName, status
FROM Orders AS o
JOIN Shipments AS s on o.id = s.orderId AND
 o.ordertime BETWEEN s.shiptime - INTERVAL '4' HOUR AND s.shiptime;

Test result

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 275

id(bigint) productName(varchar) status(varchar)

1 iphone shipped

3 huawei shipped

4 pad shipped

Example 2 (Processing time-based)
Test data

datahub_stream1

k1 v1

1 val1

2 val2

3 val3

datahub_stream2

k1 v1

1 val1

2 val2

3 val3

Test statements

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

276 > Document Version: 20231114

CREATE TABLE datahub_stream1 (
 k1 BIGINT,
 v1 VARCHAR,
 d AS PROCTIME()
) WITH (
 type='datahub',
 endpoint='<yourEndpoint>',
 accessId='<yourAccessID>',
 accessKey='<yourAccessSecret>',
 projectName='<yourProjectName>',
 topic='<yourTopic>',
 project='<yourProjectName>'
);

CREATE TABLE datahub_stream2 (
 k2 BIGINT,
 v2 VARCHAR,
 e AS PROCTIME()
) WITH (
 type='datahub',
 endpoint='<yourEndpoint>',
 accessId='<yourAccessID>',
 accessKey='<yourAccessSecret>',
 projectName='<yourProjectName>',
 topic='<yourTopic>',
 project='<yourProjectName>'
);

--Create an ApsaraDB RDS result table.
CREATE TABLE rds_output(
 k1 BIGINT,
 v1 VARCHAR,
 v2 VARCHAR
) WITH (
 type='rds',
 url='<yourDatabaseURL>',
 tableName='<yourDatabaseTablename>',
 userName='<yourDatabaseUserName>',
 password='<yourDatabasePassword>'
);

INSERT INTO rds_output
SELECT k1, v1, v2
FROM datahub_stream1 AS o
JOIN datahub_stream2 AS s on o.k1 = s.k2 AND
 o.d BETWEEN s.e - INTERVAL '4' MINUTE AND s.e;

Note The results are uncertain because they depend on the time when each data
record in the two data streams enters the system. Therefore, this example does not
provide the expected results.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 277

A UNION ALL clause is used to combine two data streams. The field types and sequences of
the two data streams must be the same.

Syntax
select_statement
UNION ALL
select_statement;

Note Realtime Compute for Apache Flink also supports the UNION function.
 UNION ALL allows duplicate values and UNION does not allow duplicate values. In
Realtime Compute for Apache Flink, UNION is equivalent to the combination of UNION
ALL and DISTINCT . We recommend that you do not use UNION because its operating
efficiency is low.

Example
Test data Table 1. test_source_union1

a (VARCHAR) b (BIGINT) c (BIGINT)

test1 1 10

Table 2. test_source_union2

a (VARCHAR) b (BIGINT) c (BIGINT)

test1 1 10

test2 2 20

Table 3. test_source_union3

a (VARCHAR) b (BIGINT) c (BIGINT)

test1 1 10

test2 2 20

test1 1 10

Sample code

5.8.8. UNION ALL

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

278 > Document Version: 20231114

SELECT
 a,
 sum(b) as d,
 sum(c) as e
FROM
 (SELECT * from test_source_union1
 UNION ALL
 SELECT * from test_source_union2
 UNION ALL
 SELECT * from test_source_union3
)t
 GROUP BY a;

Test results

a (VARCHAR) d (BIGINT) e (BIGINT)

test1 1 10

test2 2 20

test1 2 20

test1 3 30

test2 4 40

test1 4 40

Note The preceding test results are debugging results. In these results, you can
view the computing process. If your job is published and the result table is stored in
DataHub, Alibaba Cloud Message Queue for Apache Kafka, or Alibaba Cloud Message
Queue, the result data contains data about the computing process. If your job is
published and the result table is stored in a relational database such as ApsaraDB RDS,
the records that have the same primary key values are combined into one record.

A TopN clause is used to compute the largest or smallest N data records of a metric in real-
time data. Flink SQL uses an OVER window function to flexibly implement TopN computing.

Syntax
SELECT *
FROM (
 SELECT *,
 ROW_NUMBER() OVER ([PARTITION BY col1[, col2..]]
 ORDER BY col1 [asc|desc][, col2 [asc|desc]...]) AS rownum
 FROM table_name)
WHERE rownum <= N [AND conditions]

5.8.9. TopN

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 279

Note
 ROW_NUMBER() : specifies an OVER window function to compute the row number.
The value starts from 1.
 PARTITION BY col1[, col2..] : specifies one or more partitioning columns. This
parameter is optional.
 ORDER BY col1 [asc|desc][, col2 [asc|desc]...] : specifies the columns based on
which you want to sort data and the sorting order of each column.

As shown in the preceding syntax, a TopN clause requires two levels of queries.
In the subquery, the ROW_NUMBER() window function is used to sort data based on the
specified columns and mark the data with rankings.
In the outer query, only the first N data records in the ranking list are obtained. For
example, if N is set to 10, the first 10 data records are obtained.

During the execution, Flink SQL sorts an input data stream based on the sort key. If the first N
data records in a partition are changed, the updated data is sent downstream as an update
stream.

Note Therefore, if you want to export the TopN data to external storage, the target
result table must contain a primary key.

WHERE
To enable Flink SQL to identify a TopN query, use rownum <= N in the outer query to specify
the first N records. Do not place rownum in an expression, for example, rownum - 5 <= N .
If you specify multiple conditions in the WHERE clause, you must use AND to join the
conditions.

Example 1
You can use the following example to return the top 100 keywords that are queried the most
in each city within a specific hour. The hour, city, and ranking columns in the output table
identify a unique record. Therefore, you must declare the three columns as a composite key.
The key must also be configured in the external storage.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

280 > Document Version: 20231114

CREATE TABLE rds_output (
 rownum BIGINT,
 start_time BIGINT,
 city VARCHAR,
 keyword VARCHAR,
 pv BIGINT,
 PRIMARY KEY (rownum, start_time, city)
) WITH (
 type = 'rds',
 ...
)

INSERT INTO rds_output
SELECT rownum, start_time, city, keyword, pv
FROM (
 SELECT *,
 ROW_NUMBER() OVER (PARTITION BY start_time, city ORDER BY pv desc) AS rownum
 FROM (
 SELECT SUBSTRING(time_str,1,12) AS start_time,
 keyword,
 count(1) AS pv,
 city
 FROM tmp_search
 GROUP BY SUBSTRING(time_str,1,12), keyword, city
) a
) t
WHERE rownum <= 100

Example 2
Test data

ip (VARCHAR) time (VARCHAR)

 192.168.1.1 100,000,000

 192.168.1.2 100,000,000

 192.168.1.2 100,000,000

 192.168.1.3 100,030,000

 192.168.1.3 100,000,000

 192.168.1.3 100,000,000

Test statements

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 281

CREATE TABLE source_table (
 IP VARCHAR,
 `TIME` VARCHAR
)WITH(
 type='datahub',
 endPoint='<yourEndpoint>',
 project='<yourProjectName>',
 topic='<yourTopicName>',
 accessId='<yourAccessId>',
 accessKey='<yourAccessSecret>'
);

CREATE TABLE result_table (
 rownum BIGINT,
 start_time VARCHAR,
 IP VARCHAR,
 cc BIGINT,
 PRIMARY KEY (start_time, IP)
) WITH (
 type = 'rds',
 url='<yourDatabaseAddress>',
 tableName='blink_rds_test',
 userName='<yourDatabaseUserName>',
 password='<yourDatabasePassword>'
);
INSERT INTO result_table
SELECT rownum,start_time,IP,cc
FROM (
 SELECT *,
 ROW_NUMBER() OVER (PARTITION BY start_time ORDER BY cc DESC) AS rownum
 FROM (
 SELECT SUBSTRING(`TIME`,1,2) AS start_time,-- You can specify a value based o
n the actual time. The data specified here is an example.
 COUNT(IP) AS cc,
 IP
 FROM source_table
 GROUP BY SUBSTRING(`TIME`,1,2), IP
)a
) t
WHERE rownum <= 3 -- You can specify a value based on the number of data records you
want to obtain. The data specified here is an example.

Test results

rownum (BIGINT) start_time
(VARCHAR) ip (VARCHAR) cc (BIGINT)

1 10 192.168.1.3 3

2 10 192.168.1.2 2

3 10 192.168.1.1 1

No ranking number optimization

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

282 > Document Version: 20231114

You can use no ranking number optimization to solve the data bloat issue.
Data bloat
Based on the TopN syntax, the rownum field is written into a result table as one of its
primary keys. This may lead to data bloat. For example, if the ranking of a data record
rises from the ninth to the first after a data update, the rankings of the records from the
first to the ninth all change. The changes must be updated in the result table. This results
in data bloat. The data update in the result table may slow down because an excessive
volume of data is received.
Method of no ranking number optimization
To avoid data bloat, remove rownum from the result table and compute rownum at the
front end. The volume of TopN data records is not large, so the top 100 data records can
be obtained quickly at the front end. In this case, if the ranking of a data record rises
from the ninth to the first after an update, only this record needs to be delivered to the
result table. This accelerates data update in the result table.

Syntax

SELECT col1, col2, col3
FROM (
 SELECT col1, col2, col3
 ROW_NUMBER() OVER ([PARTITION BY col1[, col2..]]
 ORDER BY col1 [asc|desc][, col2 [asc|desc]...]) AS rownum
 FROM table_name)
WHERE rownum <= N [AND conditions]

The syntax is similar to the original TopN syntax. You only need to remove the rownum
field from the outer query.

Note If the rownum field is removed, pay attention to the definition of the
primary keys in the result table. If the definition is incorrect, the TopN query result is
incorrect. The primary keys must be defined in the key list at the GROUP BY node
before the TopN clause.

Example
This example is a case from a customer in the video industry. Heavy traffic is generated
each time a video is distributed. You can identify the most popular videos based on the
video traffic. The following example identifies the top 5 videos that generate the most
traffic per minute.

Test statements

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 283

-- Read the original data storage table from Log Service.
CREATE TABLE sls_cdnlog_stream (
vid VARCHAR, -- The video ID.
rowtime TIMESTAMP, -- The time when the video was watched.
response_size BIGINT, -- The traffic generated for watching the video.
WATERMARK FOR rowtime as withOffset(rowtime, 0)
) WITH (
type='sls',
...
);

-- Compute the consumed bandwidth by video ID in a 1-minute window.
CREATE VIEW cdnvid_group_view AS
SELECT vid,
TUMBLE_START(rowtime, INTERVAL '1' MINUTE) AS start_time,
SUM(response_size) AS rss
FROM sls_cdnlog_stream
GROUP BY vid, TUMBLE(rowtime, INTERVAL '1' MINUTE);

-- Create a result table.
CREATE TABLE hbase_out_cdnvidtoplog (
vid VARCHAR,
rss BIGINT,
start_time VARCHAR,
 -- Do not store the rownum field in the result table.
 -- Pay attention to the definition of the primary keys. The primary keys must be
defined in the key list at the GROUP BY node before the TopN clause.
PRIMARY KEY(start_time, vid)
) WITH (
type='RDS',
...
);

-- Identify and export the IDs of the top 5 videos that generate the most traffic
per minute.
INSERT INTO hbase_out_cdnvidtoplog

-- Do not include the rownum field in the outer query.
SELECT vid, rss, start_time FROM
(
SELECT
vid, start_time, rss,
ROW_NUMBER() OVER (PARTITION BY start_time ORDER BY rss DESC) as rownum
FROM
cdnvid_group_view
)
WHERE rownum <= 5;

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

284 > Document Version: 20231114

Test data

vid (VARCHAR) rowtime (TIMESTAMP) response_size (BIGINT)

10000 2017-12-18 15:00:10 2000

10000 2017-12-18 15:00:15 4000

10000 2017-12-18 15:00:20 3000

10001 2017-12-18 15:00:20 3000

10002 2017-12-18 15:00:20 4000

10003 2017-12-18 15:00:20 1000

10004 2017-12-18 15:00:30 1000

10005 2017-12-18 15:00:30 5000

10006 2017-12-18 15:00:40 6000

10007 2017-12-18 15:00:50 8000

Test results

start_time (VARCHAR) vid (VARCHAR) rss (BIGINT)

 2017-12-18 15:00:00 10000 9000

 2017-12-18 15:00:00 10007 8000

 2017-12-18 15:00:00 10006 6000

 2017-12-18 15:00:00 10005 5000

 2017-12-18 15:00:00 10002 4000

This topic describes how to use the GROUPING SETS clause in a single SELECT statement to
aggregate and analyze data from multiple dimensions. For example, you can use the
GROUPING SETS clause to aggregate the data in Column a, Column b, and both columns. If
you do not use the GROUPING SETS clause, you must execute multiple UNION ALL clauses for
multi-dimensional data aggregation and analysis. In this case, the system performance is
compromised.

Syntax

5.8.10. GROUPING SETS clause

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 285

SELECT [ALL | DISTINCT]
{ * | projectItem [, projectItem]* }
FROM tableExpression
GROUP BY
[GROUPING SETS { groupItem [, groupItem]* }];

Examples
Test data

username month day

Lily 10 1

Lucy 11 21

Lily 11 21

Sample code

SELECT
 `month`,
 `day`,
 count(distinct `username`) as uv
FROM tmall_item
group by
grouping sets((`month`),(`month`,`day`));

Test results

month day uv

10 1 1

10 null 1

11 21 1

11 null 1

11 21 2

11 null 2

Note The preceding test result is a debugging result. In the result, you can view
the computing process. If your job is published and the result table is stored in
DataHub, Alibaba Cloud Message Queue for Apache Kafka, or Alibaba Cloud Message
Queue, the result data contains the data about the computing process. If your job is
published and the result table is stored in a relational database such as ApsaraDB for
RDS, the records that have the same primary key values are combined into one record.

5.8.11. CEP statements

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

286 > Document Version: 20231114

MATCH_RECOGNIZE is a complex event processing (CEP) statement that identifies events
from input data streams based on the specified rules and generates output events based on
the specified method.

Syntax
SELECT [ALL | DISTINCT]
{ * | projectItem [, projectItem]* }
FROM tableExpression
[MATCH_RECOGNIZE (
[PARTITION BY {partitionItem [, partitionItem]*}]
[ORDER BY {orderItem [, orderItem]*}]
[MEASURES {measureItem AS col [, measureItem AS col]*}]
[ONE ROW PER MATCH|ALL ROWS PER MATCH|ONE ROW PER MATCH WITH TIMEOUT ROWS|ALL ROWS PER
MATCH WITH TIMEOUT ROWS]
[AFTER MATCH SKIP]
PATTERN (patternVariable[quantifier] [patternVariable[quantifier]]*) WITHIN intervalEx
pression
DEFINE {patternVariable AS patternDefinationExpression [, patternVariable AS
patternDefinationExpression]*}
)];

Clause Description

PARTITION BY Optional. You can use the clause to divide the rows of an input
table into partitions based on one or more partition key columns.

ORDER BY
Optional. You can use the clause to sort the rows of a partition
based on one or more columns. If you use multiple columns to sort
the rows, specify EVENT TIME or PROCESS TIME as the first
column.

MEASURES You can use the clause to define the output events that are
generated based on the matched input events.

ONE ROW PER MATCH If you use the clause, only one output event is generated for each
match.

ONE ROW PER MATCH WITH
TIMEOUT ROWS

If you use the clause, an output event is generated for each match
or time-out. The time-out period is specified by the WITHIN clause
in PATTERN.

Note Blink V3.6.0 and later do not support the ONE
ROW PER MATCH WITH TIMEOUT ROWS clause due to
Calcite upgrades.

ALL ROWS PER MATCH If you use the clause, an output event is generated for each input
event upon each match.

ALL ROWS PER MATCH WITH
TIMEOUT ROWS

If you use the clause, an output event is generated for each input
event upon each match or time-out. The time-out period is
specified by the WITHIN clause in PATTERN.

Note Blink V3.6.0 and later do not support the ALL
ROWS PER MATCH WITH TIMEOUT ROWS clause due to
Calcite upgrades.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 287

[ONE ROW PER MATCH|ALL
ROWS PER MATCH|ONE ROW
PER MATCH WITH TIMEOUT
ROWS|ALL ROWS PER MATCH
WITH TIMEOUT ROWS]

Optional. By default, ONE ROW PER MATCH is used.

AFTER MATCH SKIP TO NEXT
ROW

If you use the clause, the next match starts to be performed from
the event that follows the first event in the sequence of matched
events.

AFTER MATCH SKIP PAST LAST
ROW

If you use the clause, the next match starts to be performed from
the event that follows the last event in the sequence of matched
events.

AFTER MATCH SKIP TO FIRST
patternItem

If you use the clause, the next match starts to be performed from
the first event that corresponds to patternItem in the sequence of
matched events.

AFTER MATCH SKIP TO LAST
patternItem

If you use the clause, the next match starts to be performed from
the last event that corresponds to patternItem in the sequence of
matched events.

PATTERN

You can use the clause to specify the rule that the sequence of
events to be identified must meet. You must enclose the rule in
parentheses () . The rule is specified by a set of custom
patternVariable variables.

Note
If two patternVariable variables are separated with a
space, no events exist between the events that
correspond to the patternVariable variables.
If two patternVariable variables are separated with
an arrow sign (->), other events may exist between the
events that correspond to the patternVariable
variables.
Blink V3.6.0 and later do not support the PATTERN
clause due to Calcite upgrades.

Parameter description
quantifier
The quantifier parameter specifies the number of occurrences of events that meet the
patternVariable definition.

Value Description

* Zero or multiple times.

+ One or more times.

? Zero or once.

{n} n times.

{n,} At least n times.

{n, m} Ranges from n times to m times.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

288 > Document Version: 20231114

{,m} At most m times.

By default, greedy matching is performed. For example, if the PATTERN clause is A -> B+ -
> C and the input is a bc1 bc2 c , the output is a bc1 bc2 c . In the input, bc1 and bc2
means that the results must match B and C. To perform reluctant matching, append the
quantifier with a question mark (?). You can use the following reluctant quantifiers:

 *?
 +?
 {n}?
 {n,}?
 {n, m}?
 {,m}?

Note Blink V3.x and later do not support (e1 e2+) greedy matching. You can
use e1 e2+ e3 e3 as not e2 as an alternative. In the alternative method, at least one
e3 entry must be included to make sure that the output data is returned as expected.

In this case, the output that is generated for the input and the PATTERN setting in the
preceding example changes to a bc1 bc2,a bc1 bc2 c .

The WITHIN clause defines the maximum time span of the events that meet the
specified rule in an event sequence.
The format of static windows is INTERVAL 'string' timeUnit [TO timeUnit] , for
example, INTERVAL '10' SECOND, INTERVAL '45' DAY, INTERVAL '10:20' MINUTE TO SECOND,
INTERVAL '10:20.10' MINUTE TO SECOND, INTERVAL '10:20' HOUR TO MINUTE, INTERVAL '1-5'
YEAR TO MONTH .
The format of dynamic windows is INTERVAL intervalExpression , for example,
 INTERVAL A.windowTime + 10 . In this example, A is the first patternVariable variable in
the PATTERN clause. When you specify intervalExpression, you can use only the first
patternVariable variable in the PATTERN clause. When you specify the
intervalExpression parameter, you can use user defined functions (UDFs). The
intervalExpression result indicates the window size that is measured in milliseconds. The
data type of the result must be LONG.
The DEFINE statement specifies the meanings of patternVariable variables in the
PATTERN clause. If a patternVariable variable is not defined in the DEFINE statement,
the patternVariable variable is valid for each event.

Functions in MEASURES and DEFINE statements

Function Description

Row Pattern Column
References

This function uses the format of patternVariable.col . This
function is used to access the specified column of an event that
corresponds to a patternVariable variable.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 289

PREV

This function can be used in only the DEFINE statement. In most
cases, this function is used in conjunction with the Row Pattern
Column References function. This function is used to access
the specified column of a previous event that has a specified
offset. The event occurs before the events that are specified by
the PATTERN clause.
For example, you can use DOWN AS DOWN.price <
PREV(DOWN.price) . In this example, PREV(A.price)
specifies the price column value for the event that occurs
before the current event.

Note
 DOWN.price is equivalent to PREV(DOWN.price,
0) .
 PREV(DOWN.price) is equivalent to
 PREV(DOWN.price, 1) .

FIRST or LAST

In most cases, the FIRST or the LAST function is used in
conjunction with the Row Pattern Column References
function. You can use the FIRST or the LAST function to access
the event that has a specified offset in the sequence of events.
The sequence of events is specified by the PATTERN clause. The
following examples are used to explain the functions:

 FIRST(A.price, 3) specifies the fourth event in the
sequence of events that match the pattern A .
 LAST(A.price, 3) specifies the last but three event in the

sequence of events that match the pattern A .

Output columns

Function Output column

ONE ROW PER MATCH

The columns that are specified in PARTITION BY and
 MEASURES are included. The columns that are specified in
 PARTITION BY do not need to be specified in MEASURES

again.

ONE ROW PER MATCH WITH
TIMEOUT ROWS

An output event is generated for each match or time-out. The
time-out period is specified by the WITHIN clause in PATTERN.

Note
When you define the PATTERN clause, we recommend that you define the
WITHIN clause. If the WITHIN clause is not defined, the state size may grow
larger.
The first column that is specified in the ORDER BY clause must be EVENT TIME or
PROCESS TIME.

Examples
Syntax in the example

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

290 > Document Version: 20231114

SELECT *
FROM Ticker MATCH_RECOGNIZE (
PARTITION BY symbol
ORDER BY tstamp
MEASURES STRT.tstamp AS start_tstamp,
LAST(DOWN.tstamp) AS bottom_tstamp,
LAST(UP.tstamp) AS end_tstamp
ONE ROW PER MATCH
AFTER MATCH SKIP TO NEXT ROW
PATTERN (STRT DOWN+ UP+) WITHIN INTERVAL '10' SECOND
DEFINE
DOWN AS DOWN.price < PREV(DOWN.price),
UP AS UP.price > PREV(UP.price)
);

Test data

timestamp
(TIMESTAMP) card_id(VARCHAR) location (VARCHAR) action (VARCHAR)

 2018-04-13
12:00:00 1 Beijing Consumption

 2018-04-13
12:05:00 1 Shanghai Consumption

 2018-04-13
12:10:00 1 Shenzhen Consumption

 2018-04-13
12:20:00 1 Beijing Consumption

Syntax in the test
Each credit card is identified by a unique card ID that is specified by the card_id parameter.
If payments with a credit card are made within 10 minutes at two different locations, an
alert is triggered. This helps you monitor unauthorized operations of credit cards.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 291

CREATE TABLE datahub_stream (
 `timestamp` TIMESTAMP,
 card_id VARCHAR,
 location VARCHAR,
 `action` VARCHAR,
 WATERMARK wf FOR `timestamp` AS withOffset(`timestamp`, 1000)
) WITH (
 type = 'datahub'
 ...
);

CREATE TABLE rds_out (
 start_timestamp TIMESTAMP,
 end_timestamp TIMESTAMP,
 card_id VARCHAR,
 event VARCHAR
) WITH (
 type= 'rds'
 ...
);

--Define the computational logic.
insert into rds_out
select
`start_timestamp`,
`end_timestamp`,
card_id, `event`
from datahub_stream
MATCH_RECOGNIZE (
 PARTITION BY card_id --Partition the table by card ID. The data that has the sa
me card ID is allocated to the same compute node.
 ORDER BY `timestamp` --Sort events by time in a window.
 MEASURES --Define how to generate output events based on the input e
vents that are matched.
 e2.`action` as `event`,
 e1.`timestamp` as `start_timestamp`, --Specify the time of the first event
as the start_timestamp value.
 LAST(e2.`timestamp`) as `end_timestamp` --Specify the time of the last event
as the end_timestamp value.
 ONE ROW PER MATCH --The system generates an output event for each
match.
 AFTER MATCH SKIP TO NEXT ROW --The system performs the next match from the next r
ow after each match.
 PATTERN (e1 e2+) WITHIN INTERVAL '10' MINUTE --Define two events: e1 and e2.
 DEFINE --Define the meanings of patternVariable variables in t
he PATTERN clause.
 e1 as e1.action = 'Consumption', --Mark the action of the e1 event as
Consumption.
 e2 as e2.action = 'Consumption' and e2.location <> e1.location --Mark the act
ion of the e2 event as Consumption. The locations of e1 and e2 are different.
);

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

292 > Document Version: 20231114

Note In some scenarios, some data meets the CEP condition but no outputs are
returned. This occurs because only data that meets the watermark > e2.ts condition
is processed. No input data flows into the system after e2 and the watermark is always
e2.ts -1000. As a result, the e2 data cannot be processed. Therefore, no outputs are
returned.

Test result

start_timestamp
(TIMESTAMP)

end_timestamp
(TIMESTAMP) card_id (VARCHAR) event (VARCHAR)

 2018-04-13
12:00:00.0

 2018-04-13
12:05:00.0 1 Consumption

 2018-04-13
12:05:00.0

 2018-04-13
12:10:00.0 1 Consumption

You can remove duplicates by executing statements such as FIRST_VALUE, LAST_VALUE, and
DISTINCT. This topic describes how to execute TopN statements to remove duplicates and
describes deduplication considerations.
You can remove duplicates by using the following methods:

Keep the first row of duplicate rows.
Keep the last row of duplicate rows.

Note The time attribute column in the ORDER BY clause must be defined in the
source table.

Syntax
Flink SQL does not support deduplication statements. You can execute the ROW_NUMBER OVER
WINDOW statement of Flink SQL to remove duplicates. ROW_NUMBER OVER WINDOW is similar to
a TopN statement and can be considered as a special TopN statement. For more information
about TopN statements, see TopN.
SELECT *
FROM (
 SELECT *,
 ROW_NUMBER() OVER ([PARTITION BY col1[, col2..]
 ORDER BY timeAttributeCol [asc|desc]) AS rownum
 FROM table_name)
WHERE rownum = 1;

The following list describes the parameters that are used in the preceding deduplication
statement:

 ROW_NUMBER() : calculates the number of a row. The row number starts from 1.
 PARTITION BY col1[, col2..] : specifies one or more columns based on which partitioning
is implemented. The specified partition key columns are used as the keys to remove
duplicates. This parameter is optional.
 ORDER BY timeAttributeCol [asc|desc]) : specifies the column that is used for sorting
data. This column must be a time attribute column. The time attribute can be processing

5.8.12. Deduplication statements

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 293

time or event time. You can sort rows in ascending or descending order based on the time
attribute. If you use the ascending order, the first row of duplicate rows is retained. If you
use the descending order, the last row of duplicate rows is retained.
The value of rownum in the outer query must be 1 (= 1) or greater than or equal to 1
(<= 1). In the outer query, the logical operator must be AND and you cannot use
nondeterministic user-defined functions (UDFs).

Based on the preceding syntax, two levels of queries are required to remove duplicates:
Subquery: calls the ROW_NUMBER() parameter that is used to sort data based on the time
attribute column.
Outer query: keeps the first row of duplicate rows that have the same primary key and
removes the other duplicate rows. The following two sorting orders for the time attribute
column are available:

Ascending: deduplicate keep first row .
Descending: deduplicate keep last row .

If the processing time column is used for sorting, Flink SQL removes duplicates based on the
system time. In this case, the result may change each time the deduplication statement is
executed. If the event time column is used for sorting, Flink SQL removes duplicates based on
the business time. In this case, the result remains unchanged each time the deduplication
statement is executed.

Deduplicate Keep First Row
If you select this policy, the system keeps the first row of duplicate rows that have the same
primary key and discards the other duplicate rows. Only keys are stored in the state data of
the job. This improves the job performance. You can use the following sample code to remove
duplicates and keep the first row of duplicate rows:
SELECT *
FROM (
 SELECT *,
 ROW_NUMBER() OVER (PARTITION BY b ORDER BY proctime) as rowNum
 FROM T
)
WHERE rowNum = 1;

In this example, the system removes duplicates in Table T based on Field b. The system
keeps the first row of duplicate rows based on the system time. In this example, proctime is a
field that has the processing time attribute. To remove deduplicates based on the system
time, you can also call the PROCTIME() function instead of declaring the proctime filed.

Note In a Blink version later than Blink V3.3.1, the deduplicate keep first row policy
allows you to open windows by using the event time attribute. This operation does not
trigger retraction.

Deduplicate Keep Last Row

Important This policy does not allow you to open windows by using the event time
attribute.

This policy is used to remove duplicates. The policy keeps only the last row of duplicate rows
that have the same primary key. The performance of this policy is higher than that of the
LAST_VALUE function. In the following sample code, the deduplicate keep last row policy is
used to remove duplicates:

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

294 > Document Version: 20231114

SELECT *
FROM (
 SELECT *,
 ROW_NUMBER() OVER (PARTITION BY b, d ORDER BY proctime DESC) as rowNum
 FROM T
)
WHERE rowNum = 1;

FAQ
What do I do if the following error occurs when ROW_NUMBER() OVER (PARTITION BY b, d ORDER
BY now() as time DESC) is executed?
java.lang.RuntimeException: Can not retract a non-existent record:
 38c30001,1b800000008,1c000000013,85000035343a3731,5d304013.
 This should never happen.

This error may occur due to the following two causes:
Cause: The now() function in the code may result in this error. The TopN function does
not support nondeterministic sorting fields. The now() function is nondeterministic and
returns a different value each time the function is invoked. Therefore, the previous value
cannot be found during the retraction.
Solution: Make sure that you use a deterministic time attribute field, such as a field of the
event time attribute. You can also use a field of the processing time attribute in a source
table as the deterministic time attribute field.
Cause: The value of the blink.state.ttl.ms or state.backend.niagara.ttl.ms
parameter is small.
Solution: If the specified time-to-live (TTL) value is small, use the default value or increase
the value.

This topic describes the window functions, time attributes, and window types that Flink SQL
supports.

Window functions
Flink SQL supports aggregation over infinite windows. You do not need to explicitly define
windows in your SQL statements. Flink SQL also supports aggregation over a specific window.
For example, to count the number of users who clicked a URL in the last minute, you can
define a window to collect the data about user clicks that occur in the last minute. Then, you
can compute the data in the window to obtain the result.
Flink SQL supports window aggregates and over aggregates. This topic describes window
aggregates. Window aggregates support the windows that are defined based on the following
two time attributes: event time and processing time. For each time attribute, Flink SQL
supports three window types: tumbling window, sliding window, and session window.

Time attributes
Flink SQL supports two time attributes: event time and processing time. Realtime Compute
for Apache Flink aggregates data in windows based on the following time attributes:

5.9. Window functions
5.9.1. Overview

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 295

Event time: the event time that you provide in the table schema. In most cases, the event
time is the original time when data is created.
Processing time: the local system time at which the system processes an event.

Note For more information about the time attributes, see Time attributes.

Cascading windows
The event time attribute of the Rowtime column no longer takes effect after a window
operation is complete. You can use a helper function such as TUMBLE_ROWTIME ,
 HOP_ROWTIME , or SESSION_ROWTIME to obtain max(rowtime) of the rowtime column in a
window. You can use the obtained value as the rowtime of the time window. The value is
 window_end - 1 and is of the TIMESTAMP data type. The TIMESTAMP value has the rowtime
attribute. For example, if the time span for a window is [00:00, 00:15] , 00:14:59.999 is
returned.
In the following example, 1-hour tumbling windows are used to aggregate data based on the
aggregation results of 1-minute tumbling windows. This helps you meet various window
requirements.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

296 > Document Version: 20231114

CREATE TABLE user_clicks(
 username varchar,
 click_url varchar,
 ts timeStamp,
 WATERMARK wk FOR ts as withOffset(ts, 2000) --Define a watermark for the rowtime.
) with (
 type='datahub',
 ...
);

CREATE TABLE tumble_output(
 window_start TIMESTAMP,
 window_end TIMESTAMP,
 username VARCHAR,
 clicks BIGINT
) with (
 type='print'
);

CREATE VIEW one_minute_window_output as
SELECT
 // Use each TUMBLE_ROWTIME value as the aggregation time for the level-two window.
 TUMBLE_ROWTIME(ts, INTERVAL '1' MINUTE) as rowtime,
 username,
 COUNT(click_url) as cnt
FROM user_clicks
GROUP BY TUMBLE(ts, INTERVAL '1' MINUTE), username;

INSERT INTO tumble_output
SELECT
 TUMBLE_START(rowtime, INTERVAL '1' HOUR),
 TUMBLE_END(rowtime, INTERVAL '1' HOUR),
 username,
 SUM(cnt)
FROM one_minute_window_output
GROUP BY TUMBLE(rowtime, INTERVAL '1' HOUR), username;

This topic describes how to use the TUMBLE function in Realtime Compute for Apache Flink.

Description
A TUMBLE function assigns each element to a tumbling window that has a specific size. In
most cases, tumbling windows are fixed in size and do not overlap with each other. For
example, if a 5-minute tumbling window is defined, an infinite data stream is divided into
windows based on the time period, such as [0:00, 0:05) , [0:05, 0:10) , and [0:10,
0:15) .

Syntax
You can use a TUMBLE function in a GROUP BY clause to define a tumbling window.

5.9.2. TUMBLE

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 297

TUMBLE(<time-attr>, <size-interval>)
<size-interval>: INTERVAL 'string' timeUnit

Note The <time-attr> parameter must be a valid time attribute field in a time
stream. This parameter specifies whether the time is a processing time or an event time.
For more information, see Time attributes, Watermark, and Overview.

Window identifier functions
A window identifier function specifies the start time, end time, or time attribute of a window.
The time attribute is used to aggregate lower-level windows.

Function Return value type Description

 TUMBLE_START(time-
attr, size-
interval)

TIMESTAMP
Returns the start time, including the boundary
value, of a window. For example, if the time span
of a window is [00:10,00:15] , 00:10 is
returned.

 TUMBLE_END(time-
attr, size-
interval)

TIMESTAMP
Returns the end time, including the boundary
value, of a window. For example, if the time span
of a window is [00:00, 00:15] , 00:15 is
returned.

 TUMBLE_ROWTIME(tim
e-attr, size-
interval)

TIMESTAMP(rowtime-
attr)

Returns the end time, excluding the boundary
value, of a window. For example, if the time span
of a window is (00:00, 00:15) ,
 00:14:59.999 is returned. The return value is

a rowtime attribute value based on which time
operations can be performed. For example, this
function can be used in only the windows that are
based on the event time, such as cascading
windows. For more information, see Cascading
window.

 TUMBLE_PROCTIME(ti
me-attr, size-
interval)

TIMESTAMP(rowtime-
attr)

Returns the end time, excluding the boundary
value, of a window. For example, if the time span
of a window is (00:00, 00:15) ,
 00:14:59.999 is returned. The return value is

a proctime attribute, based on which time
operations can be performed. For example, a
cascading window function can be used only in
windows that are defined based on the
processing time.

Example 1: Count the number of clicks per user per minute for
a specific website based on the event time

Test data

username (VARCHAR) click_url (VARCHAR) ts (TIMESTAMP)

Jark http://taobao.com/xxx 2017-10-10 10:00:00.0

Jark http://taobao.com/xxx 2017-10-10 10:00:10.0

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

298 > Document Version: 20231114

Jark http://taobao.com/xxx 2017-10-10 10:00:49.0

Jark http://taobao.com/xxx 2017-10-10 10:01:05.0

Jark http://taobao.com/xxx 2017-10-10 10:01:58.0

Timo http://taobao.com/xxx 2017-10-10 10:02:10.0

Test statements

CREATE TABLE user_clicks(
 username varchar,
 click_url varchar,
 ts timeStamp,
 WATERMARK wk FOR ts as withOffset(ts, 2000) --Define a watermark for rowtime.
) WITH (
 type='datahub',
 ...
);

CREATE TABLE tumble_output(
 window_start TIMESTAMP,
 window_end TIMESTAMP,
 username VARCHAR,
 clicks BIGINT
) WITH (
 type='RDS'
);

INSERT INTO tumble_output
SELECT
TUMBLE_START(ts, INTERVAL '1' MINUTE) as window_start,
TUMBLE_END(ts, INTERVAL '1' MINUTE) as window_end,
username,
COUNT(click_url)
FROM user_clicks
GROUP BY TUMBLE(ts, INTERVAL '1' MINUTE), username;

Test results

window_start
(TIMESTAMP)

window_end
(TIMESTAMP)

username
(VARCHAR) clicks (BIGINT)

 2017-10-10
10:00:00.0

 2017-10-10
10:01:00.0 Jark 3

 2017-10-10
10:01:00.0

 2017-10-10
10:02:00.0 Jark 2

 2017-10-10
10:02:00.0

 2017-10-10
10:03:00.0 Timo 1

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 299

Example 2: Count the number of clicks per user per minute for
a specific website based on the processing time

Test data

username (VARCHAR) click_url (VARCHAR)

Jark http://taobao.com/xxx

Jark http://taobao.com/xxx

Jark http://taobao.com/xxx

Jark http://taobao.com/xxx

Jark http://taobao.com/xxx

Timo http://taobao.com/xxx

Test statements

CREATE TABLE window_test (
 username VARCHAR,
 click_url VARCHAR,
 ts as PROCTIME()
) WITH (
 type='datahub',
 ...
);

CREATE TABLE tumble_output(
 window_start TIMESTAMP,
 window_end TIMESTAMP,
 username VARCHAR,
 clicks BIGINT
) WITH (
 type='print'
);

INSERT INTO tumble_output
SELECT
TUMBLE_START(ts, INTERVAL '1' MINUTE),
TUMBLE_END(ts, INTERVAL '1' MINUTE),
username,
COUNT(click_url)
FROM window_test
GROUP BY TUMBLE(ts, INTERVAL '1' MINUTE), username;

Test results

window_start
(TIMESTAMP)

window_end
(TIMESTAMP)

username
(VARCHAR) clicks (BIGINT)

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

300 > Document Version: 20231114

 2019-04-11
14:43:00.000

 2019-04-11
14:44:00.000 Jark 5

 2019-04-11
14:43:00.000

 2019-04-11
14:44:00.000 Timo 1

Note Local debugging is instantaneous and the processing time may be less
than 1s. Therefore, if the processing time attribute is used to aggregate data in
windows, local debugging may fail.

This topic describes how to use the HOP function in Realtime Compute for Apache Flink.

Note In Realtime Compute for Apache Flink, the HOP function cannot be used in
conjunction with LAST_VALUE, FIRST_VALUE, or TopN functions.

Introduction
A HOP function is used to define a hopping window, which is also known as a sliding window.
Unlike tumbling windows, sliding windows can overlap with each other.
A sliding window is defined by the following parameters: slide and size. The slide parameter
specifies the length of a sliding step. The size parameter specifies the size of the window.

If the value of slide is less than the value of size, windows overlap with each other and
each element is assigned to multiple windows.
If the value of slide is equal to the value of size, windows are tumbling windows.
If the value of slide is greater than the value of size, windows are sliding windows. These
windows do not overlap with each other and are separated by gaps.

In most cases, most elements are assigned to multiple windows and the windows overlap with
each other. Sliding windows are used to calculate moving averages. For example, to calculate
the data average in the last 5 minutes every 10 seconds, set slide to 10 seconds and set
size to 5 minutes.

Syntax
You can use the HOP function to define a sliding window in a GROUP BY clause.

HOP(<time-attr>, <slide-interval>,<size-interval>)
<slide-interval>: INTERVAL 'string' timeUnit
<size-interval>: INTERVAL 'string' timeUnit

Note
The <time-attr> parameter must be a valid time attribute field in a stream. This
parameter specifies whether the time is the processing time or the event time. For more
information about Time attributes and Watermark, see Overview.

Window identifier functions
A window identifier function specifies the start time, end time, or time attribute of a window.
The time attribute is used to aggregate lower-level windows.

5.9.3. HOP

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 301

Function Return value type Description

 HOP_START (<time-
attr>, <slide-
interval>, <size-
interval>)

TIMESTAMP
Returns the start time, including the boundary
value, of a window. For example, if the time span
of a window is [00:10, 00:15) , 00:10 is
returned.

 HOP_END (<time-
attr>, <slide-
interval>, <size-
interval>)

TIMESTAMP
Returns the end time, including the boundary
value, of a window. For example, if the time span
of a window is [00:00, 00:15) , 00:15 is
returned.

 HOP_ROWTIME
(<time-attr>,
<slide-interval>,
<size-interval>)

TIMESTAMP (rowtime-
attr)

Returns the end time, excluding the boundary
value, of a window. For example, if the time span
of a window is (00:00, 00:15) ,
 00:14:59.999 is returned. The return value is

a rowtime attribute based on which time
operations can be performed. This function can
be used in only the windows that are defined
based on the event time, such as cascading
windows. For more information, see Cascading
windows.

 HOP_PROCTIME
(<time-attr>,
<slide-interval>,
<size-interval>)

TIMESTAMP (rowtime-
attr)

Returns the end time, excluding the boundary
value, of a window. For example, if the time span
of a window is (00:00, 00:15) ,
 00:14:59.999 is returned. The return value is

a processing time attribute based on which time
operations can be performed. This function can
be used only in the windows that are defined
based on the processing time, such as cascading
windows. For more information, see Cascading
windows.

Example
In the following example, a 1-minute window slides once every 30 seconds. You can use the
windows to count the number of clicks per user over the last minute every 30 seconds.

Test data

username (VARCHAR) click_url (VARCHAR) ts (TIMESTAMP)

Jark http://taobao.com/xxx 2017-10-10 10:00:00.0

Jark http://taobao.com/xxx 2017-10-10 10:00:10.0

Jark http://taobao.com/xxx 2017-10-10 10:00:49.0

Jark http://taobao.com/xxx 2017-10-10 10:01:05.0

Jark http://taobao.com/xxx 2017-10-10 10:01:58.0

Timo http://taobao.com/xxx 2017-10-10 10:02:10.0

Test statements

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

302 > Document Version: 20231114

CREATE TABLE user_clicks (
 username VARCHAR,
 click_url VARCHAR,
 ts TIMESTAMP,
 WATERMARK wk FOR ts AS WITHOFFSET (ts, 2000)--Define a watermark for rowtime.
) WITH (TYPE = 'datahub',
 ...);

CREATE TABLE hop_output (
 window_start TIMESTAMP,
 window_end TIMESTAMP,
 username VARCHAR,
 clicks BIGINT
) WITH (TYPE = 'rds',
 ...);

INSERT INTO
 hop_output
SELECT
 HOP_START (ts, INTERVAL '30' SECOND, INTERVAL '1' MINUTE),
 HOP_END (ts, INTERVAL '30' SECOND, INTERVAL '1' MINUTE),
 username,
 COUNT (click_url)
FROM
 user_clicks
GROUP BY
 HOP (ts, INTERVAL '30' SECOND, INTERVAL '1' MINUTE),
 username

Test results

window_start
(TIMESTAMP)

window_end
(TIMESTAMP)

username
(VARCHAR) clicks (BIGINT)

 2017-10-10
09:59:30.0

 2017-10-10
10:00:30.0 Jark 2

 2017-10-10
10:00:00.0

 2017-10-10
10:01:00.0 Jark 3

 2017-10-10
10:00:30.0

 2017-10-10
10:01:30.0 Jark 2

 2017-10-10
10:01:00.0

 2017-10-10
10:02:00.0 Jark 2

 2017-10-10
10:01:30.0

 2017-10-10
10:02:30.0 Jark 1

 2017-10-10
10:02:00.0

 2017-10-10
10:03:00.0 Timo 1

 2017-10-10
10:02:30.0

 2017-10-10
10:03:30.0 Timo 1

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 303

If a sliding window cannot read the time at which data enters the window, the start time of
the first window is moved forward. You can use the following formula to calculate the time
interval by which the start time is moved forward: Time interval = Window duration -
Sliding step.

Windo
w
durati
on
(secon
ds)

Sliding step
(seconds) Event Time Start time of the

first window
End time of the
first window

120 30 2019-07-31
10:00:00.0

 2019-07-31
09:58:30.0

 2019-07-31
10:00:30.0

60 10 2019-07-31
10:00:00.0

 2019-07-31
09:59:10.0

 2019-07-31
10:00:10.0

This topic describes how to use the SESSION function in Realtime Compute for Apache Flink.

Introduction
A SESSION function groups elements by session activity. Unlike tumbling and sliding windows,
session windows do not overlap and are not fixed in size. If a session window does not receive
elements within a specific period of time, the session is disconnected and the window is
closed.
A session window is configured by using a gap, which defines the length of the inactive
period. For example, a data stream that represents mouse click activities may include highly
clustered mouse click events, separated by inactive periods. Data that arrives after a
specified gap is assigned to a new window.

Syntax
You can use a SESSION function in a GROUP BY clause to define a session window.
SESSION(<time-attr>, <gap-interval>)
<gap-interval>: INTERVAL 'string' timeUnit

Note The <time-attr> parameter must be a valid time attribute in a data stream
to specify whether the time is the processing time or event time. For more information,
see Overview, Time attributes, and Watermark.

Window identifier functions
A window identifier function specifies the start time, end time, or time attribute of a window.
The time attribute is used to aggregate lower-level windows.

Function Return value type Description

 SESSION_START
(<time-attr>, <gap-
interval>)

Timestamp

Returns the start time, including the boundary
value, of a window. For example, if the time span
of a window is [00:10, 00:15] , 00:10 is
returned. The return value is the time of the first
record in the session window.

5.9.4. SESSION

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

304 > Document Version: 20231114

 SESSION_END
(<time-attr>, <gap-
interval>)

Timestamp

Returns the end time, including the boundary
value, of a window. For example, if the time span
of a window is [00:00, 00:15] , 00:15 is
returned. The return value is the time of the last
record in the session window plus <gap-
interval> .

 SESSION_ROWTIME
(<time-attr>, <gap-
interval>)

TIMESTAMP (rowtime-
attr)

Returns the end time, excluding the boundary
value, of a window. For example, if the time span
of a window is (00:00, 00:15) ,
 00:14:59.999 is returned. The return value is

an event time attribute, based on which time
type operations such as window cascading can be
performed. The function applies only to windows
based on the event time.

 SESSION_PROCTIME
(<time-attr>, <gap-
interval>)

TIMESTAMP (rowtime-
attr)

Returns the end time, excluding the boundary
value, of a window. For example, if the time span
of a window is (00:00, 00:15) ,
 00:14:59.999 is returned. The return value is

a processing time attribute, based on which time
type operations such as window cascading can be
performed. The function applies only to windows
based on the processing time.

Example
The following example describes how to calculate the number of clicks per user during each
active session. The session timeout interval is 30 seconds.

Test data

username (VARCHAR) click_url (VARCHAR) ts (TIMESTAMP)

Jark http://taobao.com/xxx 2017-10-10 10:00:00.0

Jark http://taobao.com/xxx 2017-10-10 10:00:10.0

Jark http://taobao.com/xxx 2017-10-10 10:00:49.0

Jark http://taobao.com/xxx 2017-10-10 10:01:05.0

Jark http://taobao.com/xxx 2017-10-10 10:01:58.0

Timo http://taobao.com/xxx 2017-10-10 10:02:10.0

Test statements

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 305

CREATE TABLE user_clicks(
username varchar,
click_url varchar,
ts timeStamp,
WATERMARK wk FOR ts as withOffset(ts, 2000) -- Define a watermark for rowtime.
) WITH (
type='datahub',
...
);

CREATE TABLE session_output(
window_start TIMESTAMP,
window_end TIMESTAMP,
username VARCHAR,
clicks BIGINT
) WITH (
type='rds',
...
);

INSERT INTO session_output
SELECT
SESSION_START(ts, INTERVAL '30' SECOND),
SESSION_END(ts, INTERVAL '30' SECOND),
username,
COUNT(click_url)
FROM user_clicks
GROUP BY SESSION(ts, INTERVAL '30' SECOND), username;

Test results

window_start
(TIMESTAMP)

window_end
(TIMESTAMP)

username
(VARCHAR) clicks (BIGINT)

 2017-10-10
10:00:00.0

 2017-10-10
10:00:40.0 Jark 2

 2017-10-10
10:00:49.0

 2017-10-10
10:01:35.0 Jark 2

 2017-10-10
10:01:58.0

 2017-10-10
10:02:28.0 Jark 1

 2017-10-10
10:02:10.0

 2017-10-10
10:02:40.0 Timo 1

An OVER window is a standard window used in traditional databases. Over aggregate is
different from window aggregate. In streaming data that uses OVER windows, each element
corresponds to an OVER window. An OVER window can be determined based on an actual row
or an actual value (timestamp value) of an element. Elements of a stream are distributed
across multiple windows.

5.9.5. OVER windows

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

306 > Document Version: 20231114

In a stream that applies the OVER window, each element corresponds to an OVER window
and triggers data computing once. The row determined by each element that triggers
computing is the last row of the window where the element is located. In the underlying
implementation of Realtime Compute, the OVER window data is centrally managed. Only one
copy of the data is stored. Logically, an OVER window is created for each element. Realtime
Compute for Apache Flink calculates the data for each OVER window and then deletes the
data that is no longer used after the calculation is complete. For more information, see Over
Aggregation.

Syntax
SELECT
 agg1(col1) OVER (definition1) AS colName,
 ...
 aggN(colN) OVER (definition1) AS colNameN
FROM Tab1;

agg1(col1): aggregates input data based on the col1 column specified by GROUP BY.
OVER (definition1): defines an OVER window.
AS colName: specifies the alias of a column.

Note
OVER (definition1) for agg1 through aggN must be the same.
The alias specified by AS can be queried by using an outer SQL statement.

Window types
In Flink SQL, OVER windows are defined in compliance with standard SQL syntax. The
traditional OVER windows are not classified into fine-grained window types. OVER windows
are classified into the following two types based on the ways of determining computed rows:

ROWS OVER window: Each row of elements is treated as a new computed row. A new
window is generated for each row.
RANGE OVER window: All rows of elements with the same timestamp value are treated as
one computed row and are assigned to the same window.

Attributes

Orthogonal
attribute Description proctime eventtime

ROWS OVER Window
A window is
determined based on
the actual row of an
element.

Supported Supported

RANGE OVER Window
A window is
determined based on
the timestamp value
of an element.

Supported Supported

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 307

https://nightlies.apache.org/flink/flink-docs-release-1.13/docs/dev/table/sql/queries/over-agg/

ROWS OVER window
Description
For a ROWS OVER window, a window is generated for each element.
Syntax

SELECT
 agg1(col1) OVER(
 [PARTITION BY (value_expression1,..., value_expressionN)]
 ORDER BY timeCol
 ROWS
 BETWEEN (UNBOUNDED | rowCount) PRECEDING AND CURRENT ROW) AS colName, ...
FROM Tab1;

value_expression: specifies the value expression used for partitioning.
timeCol: specifies the time field used to sort elements.
rowCount: specifies the number of rows that precede the current row.

Example
This example describes bounded ROWS OVER windows. In this example, an on-sale product
table contains item IDs, item types, launch time, and prices. Calculate the highest price
among the three products similar to the current product before the current product is on
sale.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

308 > Document Version: 20231114

Test data

Item ID Item type On-sale time Price

ITEM001 Electronic
 2017-11-11
10:01:00 20

ITEM002 Electronic 2017-11-11
10:02:00 50

ITEM003 Electronic 2017-11-11
10:03:00 30

ITEM004 Electronic
 2017-11-11
10:03:00 60

ITEM005 Electronic 2017-11-11
10:05:00 40

ITEM006 Electronic
 2017-11-11
10:06:00 20

ITEM007 Electronic 2017-11-11
10:07:00 70

ITEM008 Clothes 2017-11-11
10:08:00 20

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 309

Test statements

CREATE TABLE tmall_item(
 itemID VARCHAR,
 itemType VARCHAR,
 onSellTime TIMESTAMP,
 price DOUBLE,
 WATERMARK onSellTime FOR onSellTime as withOffset(onSellTime, 0)
) WITH (
 type = 'sls',
 ...
);

SELECT
 itemID,
 itemType,
 onSellTime,
 price,
 MAX(price) OVER (
 PARTITION BY itemType
 ORDER BY onSellTime
 ROWS BETWEEN 2 preceding AND CURRENT ROW) AS maxPrice
 FROM tmall_item;

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

310 > Document Version: 20231114

Test results

itemID itemType onSellTime price maxPrice

ITEM001 Electronic
 2017-11-11
10:01:00

20 20

ITEM002 Electronic 2017-11-11
10:02:00 50 50

ITEM003 Electronic
 2017-11-11
10:03:00 30 50

ITEM004 Electronic 2017-11-11
10:03:00 60 60

ITEM005 Electronic 2017-11-11
10:05:00 40 60

ITEM006 Electronic
 2017-11-11
10:06:00 20 60

ITEM007 Electronic 2017-11-11
10:07:00 70 70

ITEM008 Clothes
 2017-11-11
10:08:00 20 20

RANGE OVER windows
Description
For a RANGE OVER window, all elements with the same timestamp value are assigned to
the same window.
Syntax

SELECT
 agg1(col1) OVER(
 [PARTITION BY (value_expression1,..., value_expressionN)]
 ORDER BY timeCol
 RANGE
 BETWEEN (UNBOUNDED | timeInterval) PRECEDING AND CURRENT ROW) AS colName,
...
FROM Tab1;

value_expression: specifies the value expression used for partitioning.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 311

timeCol: specifies the time field used to sort elements.
timeInterval: specifies the time interval between the time of the current row and that of
the element row to which it can be traced back.

Example
This example describes bounded RANGE OVER windows. In this example, an on-sale
product table contains item IDs, item types, launch time, and prices. Calculate the highest
price among similar products that are on sale two minutes earlier than the current product.

Test data

Item ID Item type On-sale time Price

ITEM001 Electronic 2017-11-11
10:01:00 20

ITEM002 Electronic
 2017-11-11
10:02:00 50

ITEM003 Electronic 2017-11-11
10:03:00 30

ITEM004 Electronic 2017-11-11
10:03:00 60

ITEM005 Electronic 2017-11-11
10:05:00 40

ITEM006 Electronic 2017-11-11
10:06:00 20

ITEM007 Electronic
 2017-11-11
10:07:00 70

ITEM008 Clothes 2017-11-11
10:08:00 20

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

312 > Document Version: 20231114

Test statements

CREATE TABLE tmall_item(
 itemID VARCHAR,
 itemType VARCHAR,
 onSellTime TIMESTAMP,
 price DOUBLE,
 WATERMARK onSellTime FOR onSellTime as withOffset(onSellTime, 0)
)
WITH (
 type = 'sls',
 ...
);

SELECT
 itemID,
 itemType,
 onSellTime,
 price,
 MAX(price) OVER (
 PARTITION BY itemType
 ORDER BY onSellTime
 RANGE BETWEEN INTERVAL '2' MINUTE preceding AND CURRENT ROW) AS maxPrice
 FROM tmall_item;

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 313

Test results

itemID itemType onSellTime price maxPrice

ITEM001 Electronic
 2017-11-11
10:01:00 20 20

ITEM002 Electronic 2017-11-11
10:02:00 50 50

ITEM003 Electronic 2017-11-11
10:03:00 30 50

ITEM004 Electronic
 2017-11-11
10:03:00 60 60

ITEM005 Electronic 2017-11-11
10:05:00 40 60

ITEM006 Electronic
 2017-11-11
10:06:00 20 40

ITEM007 Electronic 2017-11-11
10:07:00 70 70

ITEM008 Clothes 2017-11-11
10:08:00 20 20

This topic describes how to use the string function REGEXP_EXTRACT in Realtime Compute.

Syntax
VARCHAR REGEXP_EXTRACT(VARCHAR str, VARCHAR pattern, INT index)

Input parameters

5.10. Built-in functions
5.10.1. String functions
5.10.1.1. REGEXP_EXTRACT

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

314 > Document Version: 20231114

Parameter Data type Description

str VARCHAR The source string.

pattern VARCHAR The regular expression pattern.

index INT
The index number of the
substring to be extracted from
the source string.

Important Comply with Java code conventions to write regular expression
constants. When you run the codegen tool, it automatically converts SQL constant strings
to Java code. Write the string \d as '\d' in the regular expression, just in the same way as
you write a regular expression in Java.

Function description
This function extracts the substring with the specified index number from a string based on
the specified regular expression pattern. The index number starts from 1. If any input
parameter is NULL or the regular expression is invalid, the return value is NULL.

Examples
Test data

str1 (VARCHAR) pattern1(VARCHAR) index1 (INT)

foothebar foo(. *?)(bar) 2

100-200 (\\d+)-(\\d+) 1

null foo(. *?)(bar) 2

foothebar null 2

foothebar Empty string 2

foothebar (2

Test statements

SELECT REGEXP_EXTRACT(str1, pattern1, index1) as result
FROM T1

Test results

result(VARCHAR)

bar

100

null

null

null

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 315

null

This topic describes how to use the string function REGEXP_REPLACE in Realtime Compute for
Apache Flink.

Syntax
VARCHAR REGEXP_REPLACE(VARCHAR str, VARCHAR pattern, VARCHAR replacement)

Input parameters
Parameter Data type Description

str VARCHAR The string.

pattern VARCHAR The substring to be replaced in
the source string.

replacement VARCHAR
The substring that is used to
replace the substring that
matches the regular
expression.

Important The constants in the regular expression must comply with Java code
standards. Codegen converts SQL string constants to Java code. Write the string (\d)
as '\d' in the regular expression, which is in the same way you write a regular
expression in Java.

Description
Replaces a substring that matches a specified regular expression pattern in the source string
with another substring, and returns a new string. If any input parameter is null or the regular
expression is invalid, the return value is null.

Example
Test data

str1(VARCHAR) pattern1(VARCHAR) replace1(VARCHAR)

2014-03-13 - Empty string

NULL - Empty string

2014-03-13 - null

2014-03-13 Empty string s

2014-03-13 (s

100-200 (\d+) num

Test statements

5.10.1.2. REGEXP_REPLACE

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

316 > Document Version: 20231114

SELECT REGEXP_REPLACE(str1, pattern1, replace1) as result
FROM T1;

Test results

result(VARCHAR)

20140313

null

null

2014-03-13

null

num-num

This topic describes how to use the string function REPEAT in Realtime Compute.

Syntax
VARCHAR REPEAT(VARCHAR str, INT n)

Input parameters
Parameter Data type Description

str VARCHAR The string to be repeated.

n INT The number of times to repeat
the string.

Function description
This function repeats a string a specified number of times and returns a new string. If str is
NULL, the return value is NULL. If n is 0 or negative, the return value is an empty string.

Examples
Test data

str(VARCHAR) n(INT)

J 9

Hello 2

Hello -9

null 9

Test statements

5.10.1.3. REPEAT

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 317

SELECT REPEAT(str,n) as var1
FROM T1

Test results

var1(VARCHAR)

JJJJJJJJJ

HelloHello

Empty string

null

This topic describes how to use the string function REPLACE in Realtime Compute.

Syntax
VARCHAR REPLACE(str1, str2, str3)

Input parameters
Parameter Data type Description

str1 VARCHAR The source string.

str2 VARCHAR The substring to be replaced in
the source string.

str3 VARCHAR The replacement substring.

Function description
This function replaces a substring of a string with another substring.

Examples
Test data

str1(INT) str2(INT) str3(INT)

alibaba blink blink flink

Test statements

SELECT REPLACE(str1, str2, str3) as `result`
FROM T1

Test results

result(VARCHAR)

alibaba flink

5.10.1.4. REPLACE

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

318 > Document Version: 20231114

This topic describes how to use the string function REVERSE in Realtime Compute.

Syntax
VARCHAR REVERSE(VARCHAR str)

Input parameters
Parameter Data type Description

str VARCHAR The string.

Function description
This function returns a string in the reverse order of the specified string. If any input
parameter is NULL, the return value is NULL.

Examples
Test data

str1(VARCHAR) str2(VARCHAR) str3(VARCHAR) str4(VARCHAR)

iPhoneX Alibaba World null

Test statements

SELECT REVERSE(str1) as var1,REVERSE(str2) as var2,
 REVERSE(str3) as var3,REVERSE(str4) as var4
FROM T1

Test results

var1(VARCHAR) var2(VARCHAR) var3(VARCHAR) var4(VARCHAR)

XenohPi ababilA dlroW null

This topic describes how to use the string function RPAD in Realtime Compute.

Syntax
VARCHAR RPAD(VARCHAR str, INT len, VARCHAR pad)

Input parameters
Parameter Data type Description

5.10.1.5. REVERSE

5.10.1.6. RPAD

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 319

str VARCHAR The source string.

len INT The length of the new string
after padding.

pad VARCHAR The string to be repeatedly
padded to the source string.

Function description
This function right-pads a source string with another string several times until the new string
reaches the specified length. If any input parameter is NULL, the return value is NULL.
If len is negative, the return value is NULL.
If pad is an empty string and the value of len is less than or equal to the length of
 str , str is trimmed to the specified length. If pad is an empty string and the value of
 len is greater than the length of str , the return value is NULL.

Examples
Test data

str(VARCHAR) len(INT) pad(VARCHAR)

Empty string -2 Empty string

HelloWorld 15 John

John 2 C

C 4 HelloWorld

null 2 C

c 2 null

asd 2 Empty string

Empty string 2 s

asd 4 Empty string

Empty string 0 Empty string

Test statements

SELECT RPAD(str, len, pad) as result
FROM T1

Test results

result(VARCHAR)

null

HelloWorldJohnJ

Jo

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

320 > Document Version: 20231114

CHel

null

null

as

ss

null

Empty string

This topic describes how to use the string function SPLIT_INDEX in Realtime Compute.

Syntax
VARCHAR SPLIT_INDEX(VARCHAR str, VARCHAR sep, INT index)

Input parameters
Parameter Data type Description

str VARCHAR The source string to be split.

sep VARCHAR The separator.

index INT
The index number of the
substring to be extracted from
the source string.

Function description
This function uses the separator specified by sep to split the string specified by str into
several substrings and returns the substring indexed as index . The value of index starts
from 0. If the substring with the specified index number does not exist, the return value is
NULL.
If any input parameter is NULL, the return value is NULL.

Examples
Test data

str(VARCHAR) sep(VARCHAR) index(INT)

Jack,John,Mary , 2

Jack,John,Mary , 3

Jack,John,Mary null 0

null , 0

5.10.1.7. SPLIT_INDEX

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 321

Test statements

SELECT SPLIT_INDEX(str, sep, index) as var1
FROM T1

Test results

var1(VARCHAR)

Mary

null

null

null

This topic describes how to use the string function STR_TO_MAP in Realtime Compute.

Syntax
MAP STR_TO_MAP(VARCHAR text)
MAP STR_TO_MAP(VARCHAR text, VARCHAR listDelimiter, VARCHAR keyValueDelimiter)

Function description
This function first uses the separator specified by listDelimiter to split the given text into key-
value pairs. Then, this function uses the separator specified by keyValueDelimiter to separate
the key and value in each key-value pair. Finally, this function assembles and returns a MAP.
The default value of listDelimiter is a comma (,). The default value of keyValueDelimiter is an
equal sign (=).

Input parameters
Parameter Data type Description

text VARCHAR The input text.

listDelimiter VARCHAR
The separator between key-
value pairs in the input text.
The default value is a comma
(,).

keyValueDelimiter VARCHAR
The separator between the key
and value in each key-value
pair. The default value is an
equal sign (=).

Important The listDelimiter and keyValueDelimiter parameters are defined by Java
regular expressions. If a special character is used, it needs to be escaped.

Test statements

5.10.1.8. STR_TO_MAP

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

322 > Document Version: 20231114

SELECT
 STR_TO_MAP('k1=v1,k2=v2')['k1'] as a
FROM T1

Test results
a(VARCHAR)

v1

This topic describes how to use the string function SUBSTRING in Realtime Compute.

Syntax
VARCHAR SUBSTRING(VARCHAR a, INT start)
VARCHAR SUBSTRING(VARCHAR a, INT start, INT len)

Input parameters
Parameter Data type Description

a VARCHAR The source string.

start INT
The start position of the
substring to be extracted from
the source string.

len INT The length of the substring to
be extracted.

Function description
This function returns a substring of the specified length from a string, starting from the
specified position. If the length is not specified, this function returns the substring from the
specified position to the end of the string. The value of start begins with 1. If the value is 0, it
is regarded as 1. If the value is negative, this function counts backward from the end of the
string to find the first character of the substring.

Examples
Test data

str(VARCHAR) nullstr(VARCHAR)

k1=v1;k2=v2 null

Test statements

5.10.1.9. SUBSTRING

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 323

SELECT SUBSTRING('', 222222222) as var1,
 SUBSTRING(str, 2) as var2,
 SUBSTRING(str, -2) as var3,
 SUBSTRING(str, -2, 1) as var4,
 SUBSTRING(str, 2, 1) as var5,
 SUBSTRING(str, 22) as var6,
 SUBSTRING(str, -22) as var7,
 SUBSTRING(str, 1) as var8,
 SUBSTRING(str, 0) as var9,
 SUBSTRING(nullstr, 0) as var10
FROM T1

Test results

var1(
VARC
HAR)

var2(
VARC
HAR)

var3(
VARC
HAR)

var4(
VARC
HAR)

var5(
VARC
HAR)

var6(
VARC
HAR)

var7(
VARC
HAR)

var8(
VARC
HAR)

var9(
VARC
HAR)

var10
(VAR
CHAR
)

Empty
string

1=v1;
k2=v2 v2 v 1 Empty

string
Empty
string

k1=v1
;k2=v
2

k1=v1
;k2=v
2

null

This topic describes how to use the string function TO_BASE64 in Realtime Compute.

Syntax
VARCHAR TO_BASE64(bin)

Input parameters
Parameter Data type

bin BINARY

Function description
This function converts binary data to a Base64-encoded string.

Examples
Test data

c(VARCHAR)

SGVsbG8gd29ybGQ=

SGk=

SGVsbG8=

Test statements

5.10.1.10. TO_BASE64

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

324 > Document Version: 20231114

SELECT TO_BASE64(FROM_BASE64(c)) as var1
FROM T1

Test results

var1(VARCHAR)

SGVsbG8gd29ybGQ=

SGk=

SGVsbG8=

This topic describes how to use the string function TRIM in Realtime Compute.

Syntax
VARCHAR TRIM(VARCHAR x)

Input parameters
Parameter Data type

x VARCHAR

Function description
This function removes leading and trailing characters from a string. The most common use is
to remove leading and trailing spaces.

Examples
Test statements

SELECT TRIM(' Sample ') as result
FROM T1

Test results

result(VARCHAR)

Sample

Note The return value is 'Sample'.

This topic describes how to use the string function UPPER in Realtime Compute.

Syntax

5.10.1.11. TRIM

5.10.1.12. UPPER

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 325

VARCHAR UPPER(A)

Input parameters
Parameter Data type

A VARCHAR

Function description
This function converts all the letters in a string to uppercase.

Examples
Test data

var1(VARCHAR)

ss

ttee

Test statements

SELECT UPPER(var1) as aa
FROM T1;

Test results

aa(VARCHAR)

SS

TTEE

This topic describes how to use the string function CHAR_LENGTH in Realtime Compute.

Syntax
INT CHAR_LENGTH(A)

Input parameters
Parameter Data type

A INT

Function description
This function returns the number of characters contained in a string.

Examples

5.10.1.13. CHAR_LENGTH

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

326 > Document Version: 20231114

Test data

var1(INT)

ss

231ee

Test statements

SELECT CHAR_LENGTH(var1) as aa
FROM T1;

Test results

aa(INT)

2

5

This topic describes how to use the string function CHR in Realtime Compute.

Syntax
VARCHAR CHR(INT ascii)

Input parameters
Parameter Data type Description

ascii INT
The integer ranging from 0 to
255. If the input parameter falls
out of this range, the return
value is NULL.

Function description
This function converts an ASCII code into a character.

Examples
Test data

int1(INT) int2(INT) int3(INT)

255 97 65

Test statements

SELECT CHR(int1) as var1, CHR(int2) as var2, CHR(int3) as var3
FROM T1

Test results

5.10.1.14. CHR

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 327

var1(VARCHAR) var2(VARCHAR) var3(VARCHAR)

ÿ a A

This topic describes how to use the string function CONCAT in Realtime Compute.

Syntax
 VARCHAR CONCAT(VARCHAR var1, VARCHAR var2, ...)

Input parameters
Parameter Data type Description

var1 VARCHAR The string.

var2 VARCHAR The string.

Function description
This function concatenates two or more strings into a single string. If any input parameter is
NULL, the parameter is skipped.

Examples
Test data

var1(VARCHAR) var2(VARCHAR) var3(VARCHAR)

Hello My World

Hello null World

null null World

null null null

Test statements

SELECT CONCAT(var1, var2, var3) as var
FROM T1

Test results

var(VARCHAR)

HelloMyWorld

HelloWorld

World

null

5.10.1.15. CONCAT

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

328 > Document Version: 20231114

This topic describes how to use the string function CONCAT_WS in Realtime Compute.

Syntax
VARCHAR CONCAT_WS(VARCHAR separator, VARCHAR var1, VARCHAR var2, ...)

Input parameters
Parameter Data type Description

separator VARCHAR The separator.

var1 VARCHAR The parameter to be
concatenated.

var2 VARCHAR The parameter to be
concatenated.

Function description
This function concatenates every two parameter values with a separator and returns a new
string. The length and type of the new string depend on the input values.

Note If the separator value is NULL, it is regarded as an empty string for
concatenating the parameter values. If any other parameter is NULL, the parameter is
skipped during concatenation.

Examples
Test data

sep(VARCHAR) str1(VARCHAR) str2(VARCHAR) str3(VARCHAR)

| Jack Harry John

null Jack Harry John

| null Harry John

| Jack null null

Test statements

SELECT CONCAT_WS(sep, str1, str2, str3) as var
FROM T1

Test results

var(VARCHAR)

Jack|Harry|John

JackHarryJohn

5.10.1.16. CONCAT_WS

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 329

Harry|John

Jack

This topic describes how to use the string function FROM_BASE64 in Realtime Compute.

Syntax
BINARY FROM_BASE64(str)

Input parameters
Parameter Data type Description

str VARCHAR The Base64-encoded string.

Function description
This function decodes a Base64-encoded string into binary data.

Examples
Test data

a(INT) b(BIGINT) c(VARCHAR)

1 1L null

Test statements

SELECT
from_base64(c) as var1,from_base64('SGVsbG8gd29ybGQ=') as var2
FROM T1

Test results

var1(BINARY) var2(BINARY)

null
Byte Array: [72('H'), 101('e'), 108('l'), 108('l'),
111('o'), 32(' '), 119('w'), 111('o'), 114('r'),
108('l'), 100('d')]

This topic describes how to use the string function HASH_CODE in Realtime Compute.

Syntax
INT HASH_CODE(VARCHAR str)

5.10.1.17. FROM_BASE64

5.10.1.18. HASH_CODE

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

330 > Document Version: 20231114

Input parameters

str VARCHAR

Function description
This function generates a hash code for the specified string based on the HASH_CODE()
method, and then returns the absolute value of the hash code.

Examples
Test data

str1(VARCHAR) str2(VARCHAR) nullstr(VARCHAR)

k1=v1;k2=v2 k1:v1,k2:v2 null

Test statements

SELECT HASH_CODE(str1) as var1, HASH_CODE(str2) as var2, HASH_CODE(nullstr) as var3
FROM T1

Test results

var1(INT) var2(INT) var3(INT)

1099348823 401392878 null

This topic describes how to use the string function INITCAP in Realtime Compute.

Syntax
 VARCHAR INITCAP(A)

Input parameters
Parameter Data type

A VARCHAR

Description
Returns a string in which the first letter of each word is uppercase and all other letters are
lowercase.

Example
Test data

var1 (VARCHAR)

aADvbn

5.10.1.19. INITCAP

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 331

Test statements

SELECT INITCAP(var1)as aa
FROM T1;

Test results

aa (VARCHAR)

Aasvbn

This topic describes how to use the string function INSTR in Realtime Compute.

Note The INSTR function is available only in Realtime Compute V2.2.0 and later.

Syntax
INT instr(string1, string2)
INT instr(string1, string2 [, start_position [, nth_appearance]])

Input parameters
Parameter Data type Description

string1 VARCHAR The source string to search.

string2 VARCHAR The substring to search for in
the source string.

start_position INT The position in the source
string where the search starts.

nth_appearance INT
Which occurrence of the
substring to be searched for in
the source string.

Function description
This function returns the position of the substring in the source string. If the substring is not
found in the source string, the return value is 0.

Examples
Test data T1

string1(VARCHAR)

helloworld

Test statements

5.10.1.20. INSTR

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

332 > Document Version: 20231114

SELECT
instr('helloworld','lo') as res1,
instr('helloworld','l',-1,1) as res2,
instr('helloworld','l',3,2) as res3
FROM T1

Test results

res1(INT) res2(INT) res3(INT)

4 9 4

This topic describes how to use the string function JSON_VALUE in Realtime Compute for
Apache Flink.

Syntax
VARCHAR JSON_VALUE(VARCHAR content, VARCHAR path)

Input parameters
content
The JSON object that you want to parse, which is represented as a string. This parameter is
of the VARCHAR type.
path
The path expression that is used to parse the JSON object. This parameter is of the
VARCHAR type. The following table describes the path expressions that are supported by
the JSON_VALUE function.

Symbol Description

$ The root object.

[] The array subscript.

* The array wildcard.

. The child element.

Description
Extracts the value of the specific path from a JSON string. If the JSON string is invalid or an
input parameter is null, null is returned.

Example
Test data

id(INT) json(VARCHAR) path1(VARCHAR)

1 [10, 20, [30, 40]] $[2][*]

2 null $.ccc.hhh[*]

5.10.1.21. JSON_VALUE

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 333

3
{"aaa":"bbb","ccc":
{"ddd":"eee","fff":"ggg","hhh":
["h0","h1","h2"]},"iii":"jjj"}

$.ccc.hhh[1]

4 [10, 20, [30, 40]] NULL

5 NULL $[2][*]

6 "{xx]" "$[2][*]"

Test statement

SELECT
 id,
 JSON_VALUE(json, path1) AS `value`
FROM
 T1;

Test results

id (INT) value (VARCHAR)

1 [30,40]

2 ["h0","h1","h2"]

3 h1

4 NULL

5 NULL

6 NULL

This topic describes how to use the string function KEYVALUE in Realtime Compute.

Syntax
VARCHAR KEYVALUE(VARCHAR str, VARCHAR split1, VARCHAR split2, VARCHAR key_name)

Input parameters
Parameter Data type Description

str VARCHAR The key-value pairs in the
specified string.

split1 VARCHAR The separator between key-
value pairs.

split2 VARCHAR
The separator between the key
and value in each key-value
pair.

5.10.1.22. KEYVALUE

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

334 > Document Version: 20231114

key_name VARCHAR The name of the key whose
value is to be extracted.

Function description
This function parses the key-value pairs in a string based on the key-value pair separator and
key-value separator. Then, this function returns the value for the specified key name. If the
key name does not exist or an exception occurs, the return value is NULL.

Examples
Test data

str(VARCHAR) split1(VARCHAR) split2(VARCHAR) key1(VARCHAR)

k1=v1;k2=v2 ; = k2

null ; | :

k1:v1|k2:v2 null = :

k1:v1|k2:v2 | = null

k1:v1|k2:v2 | = :

k1:v1|k2:v2 | = :

Test statements

SELECT KEYVALUE(str, split1, split2, key1) as `result`
FROM T1

Test results

result(VARCHAR)

v2

null

null

null

null

null

This topic describes how to use the string function LOWER in Realtime Compute.

Syntax
VARCHAR LOWER(A)

5.10.1.23. LOWER

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 335

Input parameters
A
VARCHAR

Function description
This function converts all the letters in a string to lowercase.

Examples
Test data

var1(VARCHAR)

Ss

yyT

Test statements

SELECT LOWER(var1) as aa
FROM T1;

Test results

aa(VARCHAR)

ss

yyt

This topic describes how to use the string function LPAD in Realtime Compute.

Syntax
VARCHAR LPAD(VARCHAR str, INT len, VARCHAR pad)

Input parameters
Parameter Data type Description

str VARCHAR The source string.

len INT The length of the new string
after padding.

pad VARCHAR The string to be repeatedly
padded to the source string.

Function description
This function left-pads a source string with another string several times until the new string
reaches the specified length.

5.10.1.24. LPAD

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

336 > Document Version: 20231114

If any input parameter is NULL, the return value is NULL.
If len is negative, the return value is NULL.
If pad is an empty string and the value of len is less than or equal to the length of
 str , str is trimmed to the specified length. If pad is an empty string and the value of
 len is greater than the length of str , the return value is NULL.

Examples
Test data

str(VARCHAR) len(INT) pad(VARCHAR)

Empty string -2 Empty string

HelloWorld 15 John

John 2 C

C 4 HelloWorld

null 2 C

c 2 null

asd 2 Empty string

Empty string 2 s

asd 4 Empty string

Empty string 0 Empty string

Test statements

SELECT LPAD(str, len, pad) AS result
FROM T1

Test results

result(VARCHAR)

null

JohnJHelloWorld

Jo

HelC

null

null

as

ss

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 337

null

Empty string

This topic describes how to use the string function MD5 in Realtime Compute.

Syntax
VARCHAR MD5(VARCHAR str)

Input parameters
str
VARCHAR

Function description
This function returns the MD5 value of the specified string. If the input parameter is an empty
string ("), the return value is an empty string.

Examples
Test data

str1(VARCHAR) str2(VARCHAR)

k1=v1;k2=v2 Empty string

Test statements

SELECT
 MD5(str1) as var1,
 MD5(str2) as var2
FROM T1

Test results

var1(VARCHAR) var2(VARCHAR)

19c17f42b4d6a90f7f9ffc2ea9bdd775 Empty string

This topic describes how to use the string function OVERLAY in Realtime Compute for Apache
Flink.

Syntax
VARCHAR OVERLAY ((VARCHAR x PLACING VARCHAR y FROM INT start_position [FOR INT length
]))

5.10.1.25. MD5

5.10.1.26. OVERLAY

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

338 > Document Version: 20231114

Input parameters
Parameter Data type

x VARCHAR

y VARCHAR

start_position INT

length (optional) INT

Description
Replaces the substring of x with y. The replacement starts from the position specified by
start_position. The total number of characters to be replaced is the length value plus one.

Example
Test statements

OVERLAY('abcdefg' PLACING 'hij' FROM 2 FOR 2) as result
FROM T1;

Test results

result(VARCHAR)

ahijdefg

This topic describes how to use the string function PARSE_URL in Realtime Compute.

Syntax
VARCHAR PARSE_URL(VARCHAR urlStr, VARCHAR partToExtract [, VARCHAR key])

Input parameters
Parameter Data type Description

urlStr VARCHAR The URL string.

partToExtract VARCHAR The part to be parsed from the
URL.

key (optional) VARCHAR The name of the key whose
value is to be extracted.

Function description
This function parses a URL and returns the specified part from the URL. If the value of
partToExtract is QUERY, this function returns the value of the specified key in the URL. Valid
values of partToExtract include HOST, PATH, QUERY, REF, PROTOCOL, FILE, AUTHORITY, and
USERINFO.

5.10.1.27. PARSE_URL

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 339

Important If the input URL string is NULL, the return value is NULL.

Examples
Test data

url1(VARCHAR) nullstr(VARCHAR)

http://facebook.com/path/p1.php?query=1 null

Test statements

SELECT PARSE_URL(url1, 'QUERY', 'query') as var1,
 PARSE_URL(url1, 'QUERY') as var2,
 PARSE_URL(url1, 'HOST') as var3,
 PARSE_URL(url1, 'PATH') as var4,
 PARSE_URL(url1, 'REF') as var5,
 PARSE_URL(url1, 'PROTOCOL') as var6,
 PARSE_URL(url1, 'FILE') as var7,
 PARSE_URL(url1, 'AUTHORITY') as var8,
 PARSE_URL(nullstr, 'QUERY') as var9,
 PARSE_URL(url1, 'USERINFO') as var10,
 PARSE_URL(nullstr, 'QUERY', 'query') as var11
FROM T1

Test results

var1
(VAR
CHA
R)

var2
(VAR
CHA
R)

var3
(VAR
CHA
R)

var4
(VAR
CHA
R)

var5
(VAR
CHA
R)

var6
(VAR
CHA
R)

var7
(VAR
CHA
R)

var8
(VAR
CHA
R)

var9
(VAR
CHA
R)

var1
0(VA
RCH
AR)

var1
1(VA
RCH
AR)

1 query
=1

faceb
ook.c
om

/path
/p1.p
hp

null http

/path
/p1.p
hp?
query
=1

faceb
ook.c
om

null null null

This topic describes how to use the string function POSITION in Realtime Compute for Apache
Flink.

Syntax
INTEGER POSITION(x IN y)

Input parameters
Parameter Data type

x VARCHAR

y VARCHAR

5.10.1.28. POSITION

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

340 > Document Version: 20231114

Description
Returns the position where the substring x appears for the first time in the source string y. If
the substring does not exist in the source string, the return value is 0.

Example
Test statements

POSITION('in' IN 'china') as result
FROM T1;

Test results

result(INT)

3

This topic describes how to use the string function REGEXP in Realtime Compute for Apache
Flink.

Syntax
BOOLEAN REGEXP(VARCHAR str, VARCHAR pattern)

Input parameters
Parameter Data type Description

str VARCHAR The string.

pattern VARCHAR The regular expression pattern.

Description
Performs regular expression matching on a specified string to check whether it matches a
specified pattern. If the string or pattern is empty or null, the return value is false.

Example
Test data

str1(VARCHAR) pattern1(VARCHAR)

k1=v1;k2=v2 k2*

k1:v1|k2:v2 k3

null k3

k1:v1|k2:v2 null

k1:v1|k2:v2 (

Test statements

5.10.1.29. REGEXP

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 341

SELECT REGEXP(str1, pattern1) AS result
FROM T1;

Test results

result(BOOLEAN)

true

false

false

false

false

This topic describes how to use the mathematical function addition in Realtime Compute.

Syntax
A + B

Input parameters
Parameter Data type

A INT

B INT

Description
Returns the sum of A and B.

Example
Test data

int1 (INT) int2 (INT) int3 (INT)

10 20 30

Test statements

SELECT int1+int2+int3 as aa
FROM T1;

Test results

aa (INT)

5.10.2. Mathematical functions
5.10.2.1. Addition

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

342 > Document Version: 20231114

60

This topic describes how to use the mathematical function subtraction in Realtime Compute.

Syntax
A - B

Input parameters
Parameter Data type

A INT

B INT

Function description
This function returns the result of A minus B.

Examples
Test data

int1(INT) int2(INT) int3(INT)

10 10 30

Test statements

SELECT int3 - int2 - int1 as aa
FROM T1

Test results

aa(int)

10

This topic describes how to use the mathematical function multiplication in Realtime
Compute.

Syntax
A * B

Input parameters
Parameter Data type

5.10.2.2. Subtraction

5.10.2.3. Multiplication

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 343

A INT

B INT

Function description
This function returns the result of A multiplied by B.

Examples
Test data

int1(INT) int2(INT) int3(INT)

10 20 3

Test statements

SELECT int1*int2*int3 as aa
FROM T1

Test results

aa(int)

600

This topic describes how to use the mathematical function division in Realtime Compute.

Syntax
A/B

Input parameters
Parameter Data type

A INT

B INT

Function description
This function returns the result of A divided by B.

Examples
Test data

int1(INT) int2(INT)

8 4

5.10.2.4. Division

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

344 > Document Version: 20231114

Test statements

SELECT int1/int2 as aa
FROM T1

Test results

aa(int)

2

This topic describes how to use the mathematical function ABS in Realtime Compute.

Syntax
DOUBLE ABS(A)

Input parameters
Parameter Data type

A DOUBLE

Function description
This function returns the absolute value of input parameter A.

Examples
Test data

in1(DOUBLE)

4.3

Test statements

SELECT ABS(in1) as aa
FROM T1

Test results

aa(DOUBLE)

4.3

This topic describes how to use the mathematical function ACOS in Realtime Compute.

Syntax

5.10.2.5. ABS

5.10.2.6. ACOS

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 345

ACOS(A)

Input parameters
Parameter Data type

A DOUBLE

Function description
This function returns the arccosine value of input parameter A.

Examples
Test data

in1(DOUBLE)

0.7173560908995228

0.4

Test statements

SELECT ACOS(in1) as aa
FROM T1

Test results

aa(DOUBLE)

0.7707963267948966

1.1592794807274085

This topic describes how to use the mathematical function BIN in Realtime Compute.

Syntax
VARCHAR BIN(BIGINT number)

Input parameters
Parameter Data type

number

BIGINT

Note You can set this parameter only
to a BIGINT or INT value. The INT value is
implicitly converted to a BIGINT value for
computation.

5.10.2.7. BIN

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

346 > Document Version: 20231114

Function description
This function converts a BIGINT value to a binary string.

Examples
Test data

id(INT) x(BIGINT)

1 12L

2 10L

3 0L

4 10000000000L

Note In the test data, letter L in the x(BIGINT) column indicates the data
type Long, which is not involved in binary conversion.

Test statements

SELECT id, bin(x) as var1
FROM T1

Test results

id(INT) var1(VARCHAR)

1 1100

2 1010

3 0

4 1001010100000010111110010000000000

This topic describes how to use the mathematical function ASIN in Realtime Compute.

Syntax
DOUBLE ASIN(A)

Input parameters
Parameter Data type

A DOUBLE

Function description
This function returns the arcsine value of input parameter A.

5.10.2.8. ASIN

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 347

Examples
Test data

in1(DOUBLE)

0.7173560908995228

0.4

Test statements

SELECT ASIN(in1) as aa
FROM T1

Test results

aa(DOUBLE)

0.8

0.41151684606748806

This topic describes how to use the mathematical function ATAN in Realtime Compute.

Syntax
DOUBLE ATAN(A)

Input parameters
Parameter Data type

A DOUBLE

Function description
This function returns the arctangent value of input parameter A.

Examples
Test data

in1(DOUBLE)

0.7173560908995228

0.4

Test statements

SELECT ATAN(in1) as aa
FROM T1

5.10.2.9. ATAN

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

348 > Document Version: 20231114

Test results

aa(DOUBLE)

0.6222796222326533

0.3805063771123649

This topic describes how to use the mathematical function BITAND in Realtime Compute.

Syntax
INT BITAND(INT number1, INT number2)

Input parameters
Parameter Data type

number1 INT

number2 INT

Function description
This function performs a bitwise AND operation on the specified values. The input and output
parameters are both of the INT type.

Examples
Test data

a(INT) b(INT)

2 3

Test statements

SELECT BITAND(a, b) as intt
FROM T1

Test results

intt(INT)

2

This topic describes how to use the mathematical function BITNOT in Realtime Compute.

Syntax

5.10.2.10. BITAND

5.10.2.11. BITNOT

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 349

INT BITNOT(INT number)

Input parameters
Parameter Data type

number INT

Function description
This function performs a bitwise NOT operation on the specified value. The input and output
parameters are both of the INT type.

Examples
Test data

a(INT)

7

Test statements

SELECT BITNOT(a) as var1
FROM T1

Test results

var1(INT)

0xfff8

This topic describes how to use the mathematical function BITOR in Realtime Compute.

Syntax
INT BITOR(INT number1, INT number2)

Input parameters
Parameter Data type

number1 INT

number2 INT

Function description
This function performs a bitwise OR operation on the specified values. The input and output
parameters are both of the INT type.

Examples

5.10.2.12. BITOR

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

350 > Document Version: 20231114

Test data

a(INT) b(INT)

2 3

Test statements

SELECT BITOR(a, b) as var1
FROM T1

Test results

var1(INT)

3

This topic describes how to use the mathematical function BITXOR in Realtime Compute.

Syntax
INT BITXOR(INT number1, INT number2)

Input parameters
Parameter Data type

number1 INT

number2 INT

Function description
This function performs a bitwise XOR operation on the specified values. The input and output
parameters are both of the INT type.

Examples
Test data

a(INT) b(INT)

2 3

Test statements

SELECT BITXOR(a, b) as var1
FROM T1

Test results

var1(INT)

1

5.10.2.13. BITXOR

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 351

This topic describes how to use the mathematical function CARDINALITY in Realtime
Compute.

Syntax
CARDINALITY(str)

Input parameters
Parameter Data type

number1 Array

Function description
This function returns the number of elements in an array.

Examples
Test statements

SELECT cardinality(array[1,2,3]) AS `result`
FROM T1

Test results

result(INT)

3

This topic describes how to use the built-in function CONV that converts numeral systems in
Realtime Compute.

Note Blink 3.2.2 and later support this function.

Syntax
VARCHAR CONV(BIGINT number, INT FROM_BASE, INT TO_BASE)
or
VARCHAR CONV(VARCHAR number, INT FROM_BASE, INT TO_BASE)

Input parameters
Parameter Data type

number BIGINT or VARCHAR.

FROM_BASE INT type. This parameter cannot be negative.
Valid values: [2, 36].

5.10.2.14. CARDINALITY

5.10.2.15. CONV

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

352 > Document Version: 20231114

TO_BASE
INT type. This parameter can be positive
(unsigned integer), negative (signed integer), or
ABS(TO_BASE). Valid values: [2, 36].

Description
Converts a number of the BIGINT or VARCHAR type from one numeral system to another. The
return value is of the STRING type. The CONV() precision is 64 bits.

Note If the value of the number parameter is null or an invalid character, NULL is
returned.

Example
Test data

id (INT) x (BIGINT) y (VARCHAR)

1 12L '12'

2 10L '10'

3 0L 'test'

4 NULL NULL

Test statements

SELECT id, conv(x, 10, 16) as var1, conv(y, 10, 2) as var2
FROM T1;

Test results

id (INT) var1 (VARCHAR) var2 (VARCHAR)

1 C 1100

2 A 1010

3 O NULL

4 NULL NULL

This topic describes how to use the mathematical function COS in Realtime Compute.

Syntax
DOUBLE COS(A)

Input parameters
Parameter Data type

5.10.2.16. COS

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 353

A DOUBLE

Function description
This function returns the cosine value of input parameter A.

Examples
Test data

in1(DOUBLE)

0.8

0.4

Test statements

SELECT COS(in1) as aa
FROM T1

Test results

aa(DOUBLE)

0.6967067093471654

0.9210609940028851

This topic describes how to use the mathematical function COT in Realtime Compute.

Syntax
DOUBLE COT(A)

Input parameters
Parameter Data type

A DOUBLE

Function description
This function returns the cotangent value of input parameter A.

Examples
Test data

in1(DOUBLE)

0.8

0.4

5.10.2.17. COT

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

354 > Document Version: 20231114

Test statements

SELECT COT(in1) as aa
FROM T1

Test results

aa(DOUBLE)

1.0296385570503641

0.4227932187381618

This topic describes how to use the mathematical function EXP in Realtime Compute.

Syntax
DOUBLE EXP()

Input parameters
Parameter Data type

A DOUBLE

Function description
This function returns e raised to the power of the specified number. The constant e is the
base of natural logarithms.

Examples
Test data

in1(DOUBLE)

8.0

10.0

Test statements

SELECT EXP(in1) as aa
FROM T1

Test results

aa(DOUBLE)

2980.9579870417283

5.10.2.18. EXP

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 355

22026.465794806718

This topic describes how to use the mathematical function E in Realtime Compute.

Syntax
DOUBLE E(A)

Input parameters
Parameter Data type

A DOUBLE

Function description
This function returns the DOUBLE type value of natural constant e.

Examples
Test data

in1(DOUBLE)

8.0

10.0

Test statements

SELECT id, e() as dou1, E() as dou2
FROM T1

Test results

id(INT) dou1(DOUBLE) dou2(DOUBLE)

1 2.718281828459045 2.718281828459045

This topic describes how to use the mathematical function FLOOR in Realtime Compute.

Syntax
B FLOOR(A)

Input parameters

5.10.2.19. E

5.10.2.20. FLOOR

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

356 > Document Version: 20231114

Parameter Data type

A INT, BIGINT, FLOAT, or DOUBLE

Function description
This function rounds down the decimal portion of input parameter A and returns the largest
integer less than or equal to input parameter A. The data type of output parameter B is the
same as that of input parameter A.

Examples
Test data

in1(DOUBLE) in2(BIGINT)

8.123 3

Test statements

SELECT
FLOOR(in1) as out1,
FLOOR(in2) as out2
FROM T1

Test results

out1(DOUBLE) out2(BIGINT)

8.0 3

This topic describes how to use the mathematical function LN in Realtime Compute.

Syntax
DOUBLE ln(DOUBLE number)

Input parameters
Parameter Data type

number

DOUBLE

Note If the input parameter is of the
VARCHAR or BIGINT type, it is implicitly
converted to the DOUBLE type for
computation.

Function description
This function returns the natural logarithm of the specified number. The return value is a
logarithm of the DOUBLE type.

5.10.2.21. LN

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 357

Examples
Test data

ID(INT) X(DOUBLE)

1 100.0

2 8.0

Test statements

SELECT id, ln(x) as dou1, ln(e()) as dou2
FROM T1

Test results

ID(INT) dou1(DOUBLE) dou2(DOUBLE)

1 4.605170185988092 1.0

2 2.0794415416798357 1.0

This topic describes how to use the mathematical function LOG in Realtime Compute.

Syntax
DOUBLE LOG(DOUBLE base, DOUBLE x)
DOUBLE LOG(DOUBLE x)

Input parameters
Parameter Data type

base DOUBLE

x DOUBLE

Function description
This function returns the logarithm of x to the specified base. The return value is a logarithm
of the DOUBLE type. If base is not specified, this function returns the logarithm of x to base e.

Examples
Test data

ID(INT) BASE(DOUBLE) X(DOUBLE)

1 10.0 100.0

2 2.0 8.0

Test statements

5.10.2.22. LOG

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

358 > Document Version: 20231114

SELECT id, LOG(base, x) as dou1, LOG(2) as dou2
FROM T1

Test results

ID(INT) dou1(DOUBLE) dou2(DOUBLE)

1 2.0 0.6931471805599453

2 3.0 0.6931471805599453

This topic describes how to use the mathematical function LOG10 in Realtime Compute.

Syntax
DOUBLE LOG10(DOUBLE x)

Input parameters
Parameter Data type

x DOUBLE

Function description
This function returns the base-10 logarithm of x. If x is NULL, the return value is NULL. If x is
negative, an exception occurs.

Examples
Test data

id(INT) X(INT)

1 100

2 10

Test statements

SELECT id, log10(x) as dou1
FROM T1

Test results

id(INT) dou1(DOUBLE)

1 2.0

2 1.0

5.10.2.23. LOG10

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 359

This topic describes how to use the mathematical function LOG2 in Realtime Compute.

Syntax
DOUBLE LOG2(DOUBLE x)

Input parameters
Parameter Data type

x DOUBLE

Function description
This function returns the base-2 logarithm of x. If x is NULL, the return value is NULL. If x is
negative, an exception occurs.

Examples
Test data

id(INT) X(INT)

1 8

2 2

Test statements

SELECT id, log2(x) as dou1
FROM T1

Test results

id(INT) dou1(DOUBLE)

1 3.0

2 1.0

This topic describes how to use the mathematical function PI in Realtime Compute.

Syntax
DOUBLE PI()

Function description
This function returns the value of Pi.

5.10.2.24. LOG2

5.10.2.25. PI

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

360 > Document Version: 20231114

Examples
Test data

ID(INT) X(INT)

1 8

Test statements

SELECT id, PI() as dou1
FROM T1

Test results

ID(INT) dou1(DOUBLE)

1 3.141592653589793

This topic describes how to use the mathematical function POWER in Realtime Compute.

Syntax
DOUBLE POWER(A, B)

Input parameters
Parameter Data type

A DOUBLE

B DOUBLE

Function description
This function returns the result of A raised to the power of B. The result is a DOUBLE value.

Examples
Test data

in1(DOUBLE) in2(DOUBLE)

2.0 4.0

Test statements

SELECT POWER(in1, in2) as aa
FROM T1

Test results

aa(DOUBLE)

5.10.2.26. POWER

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 361

16.0

This topic describes how to use the mathematical function RAND in Realtime Compute.

Syntax
DOUBLE RAND([BIGINT seed])

Input parameters
Parameter Data type

seed BIGINT

Note The value of seed is a random number, which determines the start value of a
random number sequence.

Function description
This function returns a random number between 0 (inclusive) and 1 (exclusive). The return
value is of the DOUBLE type.

Examples
Test data

id(INT) X(INT)

1 8

Test statements

SELECT id, rand(1) as dou1, rand(3) as dou2
FROM T1

Test results

id(INT) dou1(DOUBLE) dou2(DOUBLE)

1 0.7308781907032909 0.731057369148862

This topic describes how to use the mathematical function SIN in Realtime Compute.

Syntax
DOUBLE SIN(A)

5.10.2.27. RAND

5.10.2.28. SIN

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

362 > Document Version: 20231114

Input parameters
Parameter Data type

A DOUBLE

Function description
This function returns the sine value of input parameter A.

Examples
Test data

in1(DOUBLE)

8.0

0.4

Test statements

SELECT SIN(in1) as aa
FROM T1

Test results

aa(DOUBLE)

0.9893582466233818

0.3894183423086505

This topic describes how to use the mathematical function SQRT in Realtime Compute.

Syntax
DOUBLE SQRT(A)

Input parameters
Parameter Data type

A DOUBLE

Function description
This function returns the square root of input parameter A.

Examples
Test data

5.10.2.29. SQRT

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 363

in1(DOUBLE)

8.0

Test statements

SELECT SQRT(in1) as aa
FROM T1

Test results

aa(DOUBLE)

2.8284271247461903

This topic describes how to use the mathematical function TAN in Realtime Compute.

Syntax
DOUBLE TAN(A)

Input parameters
Parameter Data type

A DOUBLE

Function description
This function returns the tangent value of input parameter A.

Examples
Test data

in1(DOUBLE)

0.8

0.4

Test statements

SELECT TAN(in1) as aa
FROM T1

Test results

aa(DOUBLE)

1.0296385570503641

0.4227932187381618

5.10.2.30. TAN

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

364 > Document Version: 20231114

This topic describes how to use the mathematical function CEIL in Realtime Compute.

Syntax
B CEIL(A)

Input parameters
Parameter Data type

A INT, BIGINT, FLOAT, or DOUBLE

B INT, BIGINT, FLOAT, or DOUBLE

Function description
This function rounds input parameter A up to the nearest integer greater than or equal to A.
The data type of output parameter B is the same as that of input parameter A.

Examples
Test data

in1(INT) in2(DOUBLE)

1 2.3

Test statements

SELECT
CEIL(in1) as out1
CEIL(in2) as out2
FROM T1

Test results

out1(INT) out2(DOUBLE)

1 3.0

This topic describes how to use the mathematical function CHARACTER_LENGTH in Realtime
Compute.

Syntax
INTEGER CHARACTER_LENGTH(VARCHAR x)

Input parameters

5.10.2.31. CEIL

5.10.2.32. CHARACTER_LENGTH

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 365

Parameter Data type

x VARCHAR

Function description
This function returns the number of characters contained in string x.

Examples
Test data

ID(INT) X(VARCHAR)

1 StreamCompute

Test statements

SELECT CHARACTER_LENGTH(x) as result
FROM T1

Test results

ID(INT) result(INT)

1 13

This topic describes how to use the mathematical function DEGREES in Realtime Compute.

Syntax
DOUBLE DEGREES(double x)

Input parameters
Parameter Data type

x DOUBLE

Function description
This function converts a radian value x to a degree value.

Examples
Test statements

SELECT DEGREES(PI()) as result
FROM T1

Test results

result(DOUBLE)

5.10.2.33. DEGREES

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

366 > Document Version: 20231114

180.0

This topic describes how to use the mathematical function MOD in Realtime Compute.

Syntax
INTEGER MOD(INTEGER x,INTEGER y)

Input parameters
Parameter Data type

x INTEGER

y INTEGER

Function description
This function returns the remainder of integer x divided by integer y. When x is negative , the
result is negative.

Examples
Test data

X(INT) Y(INT)

29 3

-29 3

-29 -3

Test statements

SELECT MOD(x,y) as result
FROM T1

Test results

result(INT)

2

-2

-2

This topic describes how to use the mathematical function ROUND in Realtime Compute for
Apache Flink.

5.10.2.34. MOD

5.10.2.35. ROUND

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 367

Syntax
T ROUND(T x, INT n)

Input parameters
Parameter Data type

x
The data type of the T parameter. Valid values:
DECIMAL, TINYINT, SMALLINT, INT, BIGINT,
FLOAT, and DOUBLE.

n INT.

Description
Rounds the x parameter to n decimal places.

Example 1
Test data Table 1. T1

in1(DECIMAL)

0.7173560908995228

0.4

Test statements

SELECT ROUND(in1,2) as `result`
FROM T1;

Test results

result(DECIMAL)

0.72

0.40

Example 2
Test data Table 2. T2

in2(DOUBLE)

0.7173560908995228

0.4

Test statements

SELECT ROUND(in2,2) as `result`
FROM T2;

Test results

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

368 > Document Version: 20231114

result(DOUBLE)

0.72

0.4

This topic describes how to use the string function LOCALTIMESTAMP in Realtime Compute.

Syntax
timestamp LOCALTIMESTAMP

Input parameters
None

Function description
This function returns the current timestamp of the system.

Examples
Test statements

SELECT
LOCALTIMESTAMP as `result`
FROM T1

Test results

result (TIMESTAMP)

2018-07-27 14:04:38.998

This topic describes how to use the date function CURRENT_DATE in Realtime Compute.

Syntax
CURRENT_DATE

Function description
This function returns the current system date.

Examples
Test statements

5.10.3. Date functions

5.10.3.1. LOCALTIMESTAMP

5.10.3.2. CURRENT_DATE

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 369

SELECT CURRENT_DATE as res
FROM T1

Test results

res(DATE)

2018-09-20

This topic describes how to use the date function CURRENT_TIMESTAMP in Realtime Compute
for Apache Flink.

Syntax
TIMESTAMP CURRENT_TIMESTAMP

Note In Blink versions earlier than 3.6.0, the syntax is TIMESTAMP
CURRENT_TIMESTAMP ().

Description
Returns the current UTC timestamp in milliseconds.

Example
Test statements

SELECT CURRENT_TIMESTAMP as var1
FROM T1;

Test results

var1(TIMESTAMP)

2007-04-30 13:10:02.047

This topic describes how to use the date function DATEDIFF in Realtime Compute.

Note We recommend that you use this function in Realtime Compute V3.3.0 and
later. If your Realtime Compute is earlier than V3.3.0, the return value of this function
may be inaccurate.

Syntax
INT DATEDIFF(VARCHAR enddate, VARCHAR startdate)
INT DATEDIFF(TIMESTAMP enddate, VARCHAR startdate)
INT DATEDIFF(VARCHAR enddate, TIMESTAMP startdate)
INT DATEDIFF(TIMESTAMP enddate, TIMESTAMP startdate)

5.10.3.3. CURRENT_TIMESTAMP

5.10.3.4. DATEDIFF

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

370 > Document Version: 20231114

Input parameters
Parameter Data type

startdate TIMESTAMP or VARCHAR

enddate TIMESTAMP or VARCHAR

Note The format of a VARCHAR type date is yyyy-MM-dd or yyyy-MM-dd HH:mm:ss.

Description
Calculates the number of days between the end date and start date. The return value is an
integer. If the input parameter is null or a parsing error occurs, the return value is null.

Example
Test data

datetime1 (VARCHAR) datetime2 (VARCHAR) nullstr (VARCHAR)

2017-10-15 00:00:00 2017-09-15 00:00:00 null

Test statements

SELECT DATEDIFF(datetime1, datetime2) as int1,
 DATEDIFF(TIMESTAMP '2017-10-15 23:00:00',datetime2) as int2,
 DATEDIFF(datetime2,TIMESTAMP '2017-10-15 23:00:00') as int3,
 DATEDIFF(datetime2,nullstr) as int4,
 DATEDIFF(nullstr,TIMESTAMP '2017-10-15 23:00:00') as int5,
 DATEDIFF(nullstr,datetime2) as int6,
 DATEDIFF(TIMESTAMP '2017-10-15 23:00:00',TIMESTAMP '2017-9-15 00:00:00')as in
t7
FROM T1;

Test results

int1 (INT) int2 (INT) int3 (INT) int4 (INT) int5 (INT) int6 (INT) int7 (INT)

30 31 -31 null null null 31

This topic describes how to use the date function DATE_ADD in Realtime Compute.

Syntax
VARCHAR DATE_ADD(VARCHAR startdate, INT days)
VARCHAR DATE_ADD(TIMESTAMP time, INT days)

Input parameters
Parameter Data type

5.10.3.5. DATE_ADD

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 371

startdate

TIMESTAMP or VARCHAR

Note The format of a VARCHAR type
date is yyyy-MM-dd or yyyy-MM-dd
HH:mm:ss.

enddate TIMESTAMP

days INT

Function description
This function adds an interval (specified by days) to the specified date and returns a new
date. The return value is a VARCHAR type date in yyyy-MM-dd format. If any input
parameter is NULL or a parsing error occurs, the return value is NULL.

Examples
Test data

datetime1(VATCHAR) nullstr(VATCHAR)

2017-09-15 00:00:00 null

Test statements

SELECT DATE_ADD(datetime1, 30) as var1,
 DATE_ADD(TIMESTAMP '2017-09-15 23:00:00',30) as var2,
 DATE_ADD(nullstr,30) as var3
FROM T1

Test results

var1(VARCHAR) var2(VARCHAR) var3(VARCHAR)

2017-10-15 2017-10-15 null

This topic describes how to use the date function DATE_FORMAT in Realtime Compute for
Apache Flink.

Syntax
VARCHAR DATE_FORMAT(TIMESTAMP time, VARCHAR to_format)
VARCHAR DATE_FORMAT(VARCHAR date, VARCHAR to_format)
VARCHAR DATE_FORMAT(VARCHAR date, VARCHAR from_format, VARCHAR to_format)

Input parameters
Parameter Data type

5.10.3.6. DATE_FORMAT

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

372 > Document Version: 20231114

date

VARCHAR

Note The default date format is yyyy-MM-dd
HH:mm:ss.

time TIMESTAMP

from_format VARCHAR

to_format VARCHAR

Description
Converts a VARCHAR type date from the source format to the required format. The time or
date parameter specifies the source string. The from_format parameter is optional. It
specifies the format of the source string. The default format is yyyy-MM-dd hh:mm:ss. The
to_format parameter specifies the format of the date that you want to return. The return
value is a VARCHAR type date in the required format. If any input parameter is null or a
parsing error occurs, the return value is null.

Example
Test data

date1(VARCHAR) datetime1(VARCHAR) nullstr(VARCHAR)

0915-2017 2017-09-15 00:00:00 null

Test statements

SELECT DATE_FORMAT(datetime1, 'yyMMdd') as var1,
 DATE_FORMAT(nullstr, 'yyMMdd') as var2,
 DATE_FORMAT(datetime1, nullstr) as var3,
 DATE_FORMAT(date1, 'MMdd-yyyy', nullstr) as var4,
 DATE_FORMAT(date1, 'MMdd-yyyy', 'yyyyMMdd') as var5,
 DATE_FORMAT(TIMESTAMP '2017-09-15 23:00:00', 'yyMMdd') as var6
FROM T1;

Test results

var1(VARCH
AR)

var2(VARCH
AR)

var3(VARCH
AR)

var4(VARCH
AR)

var5(VARCH
AR)

var6(VARCH
AR)

170915 null null null 20170915 170915

This topic describes how to use the date function DATE_SUB in Realtime Compute.

Syntax
VARCHAR DATE_SUB(VARCHAR startdate, INT days)
VARCHAR DATE_SUB(TIMESTAMP time, INT days)

Input parameters

5.10.3.7. DATE_SUB

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 373

Parameter Data type

startdate

VARCHAR

Note The format of a VARCHAR type
date is yyyy-MM-dd or yyyy-MM-dd
HH:mm:ss.

time TIMESTAMP

days INT

Function description
This function subtracts an interval (specified by days) from the specified date and returns a
new date. The return value is a VARCHAR type date in yyyy-MM-dd format. If any input
parameter is NULL or a parsing error occurs, the return value is NULL.

Examples
Test data

date1(VARCHAR) nullstr(VARCHAR)

2017-10-15 null

Test statements

SELECT DATE_SUB(date1, 30) as var1,
 DATE_SUB(TIMESTAMP '2017-10-15 23:00:00',30) as var2,
 DATE_SUB(nullstr,30) as var3
FROM T1

Test results

var1(VARCHAR) var2(VARCHAR) var3(VARCHAR)

2017-09-15 2017-09-15 null

This topic describes how to use the date function DAYOFMONTH in Realtime Compute.

Syntax
BIGINT DAYOFMONTH(TIMESTAMP time)
BIGINT DAYOFMONTH(DATE date)

Input parameters
Parameter Data type

date DATE

time TIMESTAMP

5.10.3.8. DAYOFMONTH

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

374 > Document Version: 20231114

Function description
This function returns the day in the specified date or time value. The return value ranges
from 1 to 31.

Examples
Test data

tsStr(VARCHAR) dateStr(VARCHAR) tdate(DATE) ts(TIMESTAMP)

2017-10-15 00:00:00 2017-09-15 2017-11-10 2017-10-15 00:00:00

Test statements

SELECT DAYOFMONTH(TIMESTAMP '2016-09-15 00:00:00') as int1,
 DAYOFMONTH(DATE '2017-09-22') as int2,
 DAYOFMONTH(tdate) as int3,
 DAYOFMONTH(ts) as int4,
 DAYOFMONTH(CAST(dateStr AS DATE)) as int5,
 DAYOFMONTH(CAST(tsStr AS TIMESTAMP)) as int6
FROM T1

Test results

int1(BIGINT
)

int2(BIGINT
)

int3(BIGINT
)

int4(BIGINT
)

int5(BIGINT
)

int6(BIGINT
)

15 22 10 15 15 15

This topic describes how to use the date function EXTRACT in Realtime Compute.

Syntax
BIGINT EXTRACT(unit FROM time)

Input parameters
Parameter Data type

time Any date expression.

5.10.3.9. EXTRACT

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 375

unit

Valid values of unit are as follows:
MICROSECOND
SECOND
MINUTE
HOUR
DAY
WEEK
MONTH
QUARTER
YEAR
SECOND_MICROSECOND
MINUTE_MICROSECOND
MINUTE_SECOND
HOUR_MICROSECOND
HOUR_SECOND
HOUR_MINUTE
DAY_MICROSECOND
DAY_SECOND
DAY_MINUTE
DAY_HOUR
YEAR_MONTH

Function description
This function returns one or two separate parts from the date or time value, for example, the
year, month, day, hour, minute, or week.

Examples
Test statements

EXTRACT(YEAR FROM CURRENT_TIMESTAMP) AS OrderYear,
EXTRACT(MONTH FROM CURRENT_TIMESTAMP) AS OrderMonth,
EXTRACT(DAY FROM CURRENT_TIMESTAMP) AS OrderDay,
EXTRACT(WEEK FROM CURRENT_TIMESTAMP) AS OrderWeek

Test results

OrderYear(BIGINT) OrderMonth(BIGINT
) OrderDay(BIGINT) OrderWeek(BIGINT)

2018 10 11 41

This topic describes how to use the date function FROM_UNIXTIME in Realtime Compute.

Syntax
VARCHAR FROM_UNIXTIME(BIGINT unixtime[, VARCHAR format])

Input parameters

5.10.3.10. FROM_UNIXTIME

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

376 > Document Version: 20231114

Parameter Data type

unixtime BIGINT

format VARCHAR

Function description
This function converts the timestamp (in seconds) specified by unixtime to a VARCHAR type
date in the specified date format. The default format is yyyy-MM-dd HH:mm:ss.
If any input parameter is NULL or a parsing error occurs, the return value is NULL.

Examples
Test data

unixtime1(INT) nullstr(VARCHAR)

1505404800 null

Test statements

SELECT FROM_UNIXTIME(unixtime1) as var1,
 FROM_UNIXTIME(unixtime1,'MMdd-yyyy') as var2,
 FROM_UNIXTIME(unixtime1,nullstr) as var3
FROM T1

Test results

var1(VARCHAR) var2(VARCHAR) var3(VARCHAR)

2017-10-15 2017-10-15 null

This topic describes how to use the date function HOUR in Realtime Compute.

Syntax
BIGINT HOUR(TIME time)
BIGINT HOUR(TIMESTAMP timestamp)

Input parameters
Parameter Data type

time TIME

timestamp TIMESTAMP

Function description
This function returns the hours (in 24-hour format) in the specified time or timestamp value
as a number. The return value ranges from 0 to 23.

5.10.3.11. HOUR

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 377

Examples
Test data

datetime1(VARCHA
R) time1(VARCHAR) time2(TIME) timestamp1(TIMES

TAMP)

2017-10-15 11:12:13 22:23:24 22:23:24 2017-10-15 11:12:13

Test statements

SELECT HOUR(TIMESTAMP '2016-09-20 23:33:33') as int1,
 HOUR(TIME '23:30:33') as int2,
 HOUR(time2) as int3,
 HOUR(timestamp1) as int4,
 HOUR(CAST(time1 AS TIME)) as int5,
 HOUR(CAST(datetime1 AS TIMESTAMP)) as int6
FROM T1

Test results

int1(BIGINT
)

int2(BIGINT
)

int3(BIGINT
)

int4(BIGINT
)

int5(BIGINT
)

int6(BIGINT
)

23 23 22 11 22 11

This topic describes how to use the date function LOCALTIME in Realtime Compute.

Syntax
TIME LOCALTIME

Function description
This function returns the current time of the TIME type in the session time zone. You can use
LOCALTIME as a variable.

Examples
Test statements

SELECT LOCALTIME as `result`
FROM T1

Test results

result(TIME)

19:00:47

This topic describes how to use the date function MINUTE in Realtime Compute.

5.10.3.12. LOCALTIME

5.10.3.13. MINUTE

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

378 > Document Version: 20231114

Syntax
BIGINT MINUTE(TIME time)
BIGINT MINUTE(TIMESTAMP timestamp)

Input parameters
Parameter Data type

time TIME

timestamp TIMESTAMP

Function description
This function returns the minutes in the specified time or timestamp value as a number. The
return value ranges from 0 to 59.

Examples
Test data

datetime1(VARCHA
R) time1(VARCHAR) time2(TIME) timestamp1(TIMES

TAMP)

2017-10-15 11:12:13 22:23:24 22:23:24 2017-10-15 11:12:13

Test statements

SELECT MINUTE(TIMESTAMP '2016-09-20 23:33:33') as int1,
 MINUTE(TIME '23:30:33') as int2,
 MINUTE(time2) as int3,
 MINUTE(timestamp1) as int4,
 MINUTE(CAST(time1 AS TIME)) as int5,
 MINUTE(CAST(datetime1 AS TIMESTAMP)) as int6
FROM T1

Test results

int1(BIGINT
)

int2(BIGINT
)

int3(BIGINT
)

int4(BIGINT
)

int5(BIGINT
)

int6(BIGINT
)

33 30 23 12 23 12

This topic describes how to use the date function MONTH in Realtime Compute for Apache
Flink.

Syntax
BIGINT MONTH(TIMESTAMP timestamp)
BIGINT MONTH(DATE date)

5.10.3.14. MONTH

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 379

Input parameters
Parameter Data type

time TIME

timestamp TIMESTAMP

Description
Returns the month component of a specified time value. The return value ranges from 1 to
12.

Example
Test data

a(TIMESTAMP) b(DATE)

2016-09-15 00:00:00 2017-10-15

Test statements

SELECT
 MONTH(cast(a as TIMESTAMP)) as int1,
 MONTH(cast(b as DATE)) as int2
FROM T1;

Test results

int1(BIGINT) int2(BIGINT)

9 10

This topic describes how to use the date function NOW in Realtime Compute.

Syntax
BIGINT NOW()

Input parameters
If no input parameter is specified, the UNIX timestamp (in seconds) of the current system
time is returned.

Function description
This function returns the UNIX timestamp (in seconds) in the current time zone. You can
specify an INT type parameter as an offset (in seconds) and add the offset to the current
timestamp to return a value. For example, the NOW(100) function adds 100 seconds to the
current timestamp and returns a value of the BIGINT type.

Examples

5.10.3.15. NOW

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

380 > Document Version: 20231114

Test data

b(VARCHAR)

null

Test statements

SELECT
 NOW() as big1,
 NOW(b) as big2
FROM T1

Test results

big1(BIGINT) big2(BIGINT)

1403006911 null

This topic describes how to use the date function SECOND in Realtime Compute.

Syntax
BIGINT SECOND(TIMESTAMP timestamp)
 BIGINT SECOND(TIME time)

Input parameters
Parameter Data type

time TIME

timestamp TIMESTAMP

Function description
This function returns the seconds in the specified time value as a number. The return value
ranges from 0 to 59.

Examples
Test data

datetime1(VARCHA
R) time1(VARCHAR) time2(TIME) timestamp1(TIMES

TAMP)

2017-10-15 11:12:13 22:23:24 22:23:24 2017-10-15 11:12:13

Test statements

5.10.3.16. SECOND

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 381

SELECT SECOND(TIMESTAMP '2016-09-20 23:33:33') as int1,
 SECOND(TIME '23:30:33') as int2,
 SECOND(time2) as int3,
 SECOND(timestamp1) as int4,
 SECOND(CAST(time1 AS TIME)) as int5,
 SECOND(CAST(datetime1 AS TIMESTAMP)) as int6
FROM T1

Test results

int1(BIGINT
)

int2(BIGINT
)

int3(BIGINT
)

int4(BIGINT
)

int5(BIGINT
)

int6(BIGINT
)

33 33 24 13 24 13

This topic describes how to use the date function TIMESTAMPADD in Realtime Compute.

Syntax
TIMESTAMP TIMESTAMPADD(interval,INT int_expr,TIMESTAMP datetime_expr)
DATE TIMESTAMPADD(interval,INT int_expr,DATE datetime_expr)

Input parameters
Parameter Data type

interval VARCHAR

int_expr INT

datetime_expr TIMESTAMP or DATE

5.10.3.17. TIMESTAMPADD

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

382 > Document Version: 20231114

Note
The following table lists the valid units of interval.

Unit of interval Description

FRAC_SECOND Millisecond

SECOND Second

MINUTE Minute

HOUR Hour

DAY Day

WEEK Week

MONTH Month

QUARTER Quarter

YEAR Year

Function description
This function adds the integer expression int_expr to the date or datetime expression
datetime_expr, and returns the current time of the TIME type in the session time zone. The
data type of the return value of this function is the same as that of datetime_expr.

Examples
Test data

a(TIMESTAMP) b(DATE)

2018-07-09 10:23:56 1990-02-20

Test statements

SELECT
TIMESTAMPADD(HOUR,3,a) AS `result1`
TIMESTAMPADD(DAY,3,b) AS `result2`
FROM T1

Test results

result1(TIMESTAMP) result2(DATE)

2018-07-09 13:23:56.0 1990-02-23

This topic describes how to use the date function TO_DATE in Realtime Compute.

Syntax

5.10.3.18. TO_DATE

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 383

Date TO_DATE(INT time)
Date TO_DATE(VARCHAR date)
Date TO_DATE(VARCHAR date, VARCHAR format)

Input parameters
Parameter Data type

time

INT

Note This parameter specifies the
number of days that have elapsed since
00:00:00 Thursday, 1 January, 1970.

date

VARCHAR

Note The default format is yyyy-MM-
dd.

format VARCHAR

Function description
This function converts a date of the INT or VARCHAR type to a date of the DATE type.

Examples
Test data

date1(INT) date2(VARCHAR) date3(VARCHAR)

100 2017-09-15 20170915

Test statements

SELECT TO_DATE(date1) as var1,
 TO_DATE(date2) as var2,
 TO_DATE(date3,'yyyy-MM-dd') as var3
FROM T1

Test results

var1(DATE) var2(DATE) var3(DATE)

1970-04-11 2017-09-15 2017-09-15

This topic describes how to use the date function TO_TIMESTAMP in Realtime Compute for
Apache Flink.

Syntax

5.10.3.19. TO_TIMESTAMP

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

384 > Document Version: 20231114

TIMESTAMP TO_TIMESTAMP(BIGINT time)
TIMESTAMP TO_TIMESTAMP(VARCHAR date)
TIMESTAMP TO_TIMESTAMP(VARCHAR date, VARCHAR format)

Input parameters
Parameter Data type

time
BIGINT

Note The unit is milliseconds.

date

VARCHAR

Note The default format is yyyy-MM-dd
HH:mm:ss . If your date value is not in this format, use
a Java UDF to convert the format. For more information,
see UDF.

format VARCHAR

Description
Converts the type of a date from BIGINT or VARCHAR to TIMESTAMP.

Example
Test data

timestamp1 (BIGINT) timestamp2 (VARCHAR) timestamp3 (VARCHAR)

1513135677000 2017-09-15 00:00:00 20170915000000

Test statements

SELECT TO_TIMESTAMP(timestamp1) as var1,
 TO_TIMESTAMP(timestamp2) as var2,
 TO_TIMESTAMP(timestamp3, 'yyyyMMddHHmmss') as var3
FROM T1;

Test results

var1 (TIMESTAMP) var2 (TIMESTAMP) var3 (TIMESTAMP)

2017-12-13 03:27:57.0 2017-09-15 00:00:00.0 2017-09-15 00:00:00.0

This topic describes how to use the date function UNIX_TIMESTAMP in Realtime Compute.

Syntax

5.10.3.20. UNIX_TIMESTAMP

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 385

BIGINT UNIX_TIMESTAMP()
BIGINT UNIX_TIMESTAMP(VARCHAR date)
BIGINT UNIX_TIMESTAMP(TIMESTAMP timestamp)
BIGINT UNIX_TIMESTAMP(VARCHAR date, VARCHAR format)

Input parameters
Parameter Data type

timestamp TIMESTAMP

date

VARCHAR

Note The default date format is
 yyyy-MM-dd HH:mm:ss .

format

VARCHAR

Note The default format is yyyy-
MM-dd hh:mm:ss .

Function description
This function converts the specified date to a UNIX timestamp (in seconds) of the BIGINT type.
If no input parameter is specified, the UNIX timestamp (in seconds) of the current time is
returned. In this case, this function has the same semantics as NOW. If any input parameter is
NULL or a parsing error occurs, the return value is NULL.

Examples
Test data

nullstr(VARCHAR)

null

Test statements

SELECT UNIX_TIMESTAMP() as big1,
 UNIX_TIMESTAMP(nullstr) as big2
FROM T1

Test results

big1(BIGINT) big2(BIGINT)

1403006911 null

This topic describes how to use the date function WEEK in Realtime Compute.

Syntax

5.10.3.21. WEEK

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

386 > Document Version: 20231114

BIGINT WEEK(DATE date)
BIGINT WEEK(TIMESTAMP timestamp)

Input parameters
Parameter Data type

date DATE

timestamp TIMESTAMP

Function description
This function computes the week number of the specified date in a year. The week number
ranges from 1 to 53.

Examples
Test data

dateStr(VARCHAR) date1(DATE) ts1(TIMESTAMP)

2017-09-15 2017-11-10 2017-10-15 00:00:00

Test statements

SELECT WEEK(TIMESTAMP '2017-09-15 00:00:00') as int1,
 WEEK(date1) as int2,
 WEEK(ts1) as int3,
 WEEK(CAST(dateStr AS DATE)) as int4
FROM T1

Test results

int1(BIGINT) int2(BIGINT) int3(BIGINT) int4(BIGINT)

37 45 41 37

This topic describes how to use the date function YEAR in Realtime Compute.

Syntax
BIGINT YEAR(TIMESTAMP timestamp)
BIGINT YEAR(DATE date)

Input parameters
Parameter Data type

date DATE

5.10.3.22. YEAR

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 387

timestamp TIMESTAMP

Function description
This function returns the year in the specified time value.

Examples
Test data

tsStr(VARCHAR) dateStr(VARCHAR) tdate(DATE) ts(TIMESTAMP)

2017-10-15 00:00:00 2017-09-15 2017-11-10 2017-10-15 00:00:00

Test statements

SELECT YEAR(TIMESTAMP '2016-09-15 00:00:00') as int1,
 YEAR(DATE '2017-09-22') as int2,
 YEAR(tdate) as int3,
 YEAR(ts) as int4,
 YEAR(CAST(dateStr AS DATE)) as int5,
 YEAR(CAST(tsStr AS TIMESTAMP)) as int6
FROM T1

Test results

int1(BIGINT
)

int2(BIGINT
)

int3(BIGINT
)

int4(BIGINT
)

int5(BIGINT
)

int6(BIGINT
)

2016 2017 2017 2017 2015 2017

This topic describes how to use the logical operation function = of Realtime Compute.

Syntax
 A = B

Input parameter
Name Data type

A INT

B INT

Function description
TRUE is returned if A is equal to B. Otherwise, FALSE is returned.

5.10.4. Logical functions
5.10.4.1. =

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

388 > Document Version: 20231114

Example
Test data

int1 (INT) int2 (INT) int3 (INT)

97 65 65

Test statement

SELECT int1 as aa
FROM T1
WHERE int3 = int2;

Test result

aa (INT)

97

This topic describes how to use the logical operation function > of Realtime Compute.

Syntax
 A > B

Input parameter
Name Data type

A INT

B INT

Function description
TRUE is returned if A is greater than B. Otherwise, FALSE is returned.

Example
Test data

int1 (INT) int2 (INT) int3 (INT)

97 65 100

Test statement

SELECT int1 as aa
FROM T1
WHERE int3 > int2;

Test result

5.10.4.2. >

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 389

aa (INT)

97

This topic describes how to use the logical operation function >= of Realtime Compute.

Syntax
 A >= B

Input parameter
Name Data type

A INT

B INT

Function description
TRUE is returned if A is greater than or equal to B. Otherwise, FALSE is returned.

Example
Test data

int1 (INT) int2 (INT) int3 (INT)

97 65 65

9 6 61

Test statement

SELECT int1 as aa
FROM T1
WHERE int3 >= int2;

Test result

aa (INT)

97

9

This topic describes how to use the logical operation function <= of Realtime Compute.

Syntax

5.10.4.3. >=

5.10.4.4. <=

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

390 > Document Version: 20231114

 A <= B

Input parameter
Name Data type

A INT

B INT

Function description
TRUE is returned if A is smaller than or equal to B. Otherwise, FALSE is returned.

Example
Test data

int1 (INT) int2 (INT) int3 (INT)

97 66 65

9 6 5

Test statement

SELECT int1 as aa
FROM T1
WHERE int3 <= int2;

Test result

aa (INT)

97

9

This topic describes how to use the logical operation function < of Realtime Compute.

Syntax
 A < B

Input parameter
Name Data type

A INT

B INT

5.10.4.5. <

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 391

Function description
TRUE is returned if A is smaller than B. Otherwise, FALSE is returned.

Example
Test data

int1 (INT) int2 (INT) int3 (INT)

97 66 65

9 6 5

Test statement

SELECT int1 as aa
FROM T1
WHERE int3 < int2;

Test result

aa (INT)

97

9

This topic describes how to use the logical operation function <> of Realtime Compute.

Syntax
 A <> B

Input parameter
Name Data type

A INT

B INT

Function description
TRUE is returned if A is not equal to B. Otherwise, FALSE is returned.

Example
Test data

int1 (INT) int2 (INT) int3 (INT)

97 66 6

5.10.4.6. <>

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

392 > Document Version: 20231114

Test statement

SELECT int1 as aa
FROM T1
WHERE int3 <> int2;

Test result

aa (INT)

97

This topic describes how to use the logical operation function AND of Realtime Compute.

Syntax
 A AND B

Input parameter
Name Data type

A BOOLEAN

B BOOLEAN

Function description
TRUE is returned if both A and B are TRUE. Otherwise, FALSE is returned.

Example
Test data

int1 (INT) int2 (INT) int3 (INT)

255 97 65

Test statement

SELECT int2 as aa
FROM T1
WHERE int1=255 AND int3=65;

Test result

aa (INT)

97

5.10.4.7. AND

5.10.4.8. BETWEEN AND

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 393

This topic describes how to use the logical function BETWEEN AND in Realtime Compute for
Apache Flink.

Syntax
A BETWEEN B AND C

Input parameters
Parameter Data type

A DOUBLE, BIGINT, INT, VARCHAR, DATE,
TIMESTAMP, or TIME

B DOUBLE, BIGINT, INT, VARCHAR, DATE,
TIMESTAMP, or TIME

C DOUBLE, BIGINT, INT, VARCHAR, DATE,
TIMESTAMP, or TIME

Description
Selects a value within a data range defined by another two values.

Example 1
Test data

int1(INT) int2(INT) int3(INT)

90 80 100

11 10 7

Test statements

SELECT int1 as aa
FROM T1
WHERE int1 BETWEEN int2 AND int3;

Test results

aa(int)

90

Example 2
Test data

var1(varchar) var2(varchar) var3(varchar)

b a c

Test statements

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

394 > Document Version: 20231114

SELECT var1 as aa
FROM T1
WHERE var1 BETWEEN var2 AND var3;

Test results

aa(varchar)

b

Example 3
Test data

TIMESTAMP1(TIMESTAMP) TIMESTAMP2(TIMESTAMP) TIMESTAMP3(TIMESTAMP)

1969-07-20 20:17:30 1969-07-20 20:17:20 1969-07-20 20:17:45

Test statements

SELECT TIMESTAMP1 as aa
FROM T1
WHERE TIMESTAMP1 BETWEEN TIMESTAMP2 AND TIMESTAMP3;

Test results

aa(TIMESTAMP)

1969-07-20 20:17:30

This topic describes how to use the logical operation function IS NOT FALSE of Realtime
Compute.

Syntax
A IS NOT FALSE

Input parameter
Name Data type

A BOOLEAN

Function description
If A is TRUE, TRUE is returned. If A is FALSE, FALSE is returned.

Example
Test data

int1 (INT) int2 (INT)

5.10.4.9. IS NOT FALSE

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 395

255 97

Test statement

SELECT int2 as aa
FROM T1
WHERE int1=255 IS NOT FALSE;

Test result

aa (INT)

97

This topic describes how to use the logical function IS NOT NULL in Realtime Compute.

Syntax
value IS NOT NULL

Input parameters
Parameter Data type

value Any data type

Description
If the value is null , false is returned. Otherwise, true is returned.

Example
Test data

int1 (INT) int2 (VARCHAR)

97 null

9 ww123

Test statements

SELECT int1 as aa
FROM T1
WHERE int2 IS NOT NULL;

Test results

aa (INT)

9

5.10.4.10. IS NOT NULL

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

396 > Document Version: 20231114

This topic describes how to use the logical operation function IS NOT TRUE of Realtime
Compute.

Syntax
A IS NOT TRUE

Input parameter
Name Data type

A BOOLEAN

Function description
If A is TRUE, FALSE is returned. If A is FALSE, TRUE is returned.

Example
Test data

int1 (INT) int2 (INT)

255 97

Test statement

SELECT int1 as aa
FROM T1
WHERE int1=25 IS NOT TRUE;

Test result

aa (INT)

97

This topic describes how to use the logical operation function IS NOT UNKNOWN of Realtime
Compute.

Syntax
A IS NOT UNKNOWN

Input parameter
Name Data type

A BOOLEAN

5.10.4.11. IS NOT TRUE

5.10.4.12. IS NOT UNKNOWN

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 397

Function description
A is a logical comparison expression, such as 6 < 8.
In normal cases, when A compares two numbers, the value of A can be determined, which is
either TRUE or FALSE. However, if either operand is not a number, the value of A cannot be
determined. IS NOT UNKNOWN is used to determine whether this situation occurs. If the value
of A cannot be determined (that is, the value is neither TRUE nor FALSE), FALSE is
returned. If the value of A can be determined (that is, the value is TRUE or FALSE),
 TRUE is returned.

Example 1
Test data

int1 (INT) int2 (INT)

255 97

Test statement

SELECT int2 as aa
FROM T1
WHERE int1=25 IS NOT UNKNOWN;

Test result

aa (INT)

97

Example 2
Test data

int1 (INT) int2 (INT)

255 97

Test statement

SELECT int2 as aa
FROM T1
WHERE int1 < null IS NOT UNKNOWN;

Test result

aa (INT)

null

This topic describes how to use the logical operation function IS NULL of Realtime Compute.

Syntax

5.10.4.13. IS NULL

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

398 > Document Version: 20231114

value IS NULL

Input parameter
Name Data type

value Any data type

Function description
If the value is NULL , TRUE is returned. Otherwise, FALSE is returned.

Example
Test data

int1 (INT) int2 (VARCHAR)

97 NULL

9 www

Test statement

SELECT int1 as aa
FROM T1
WHERE int2 IS NULL;

Test result

aa (INT)

97

This topic describes how to use the logical function IS TRUE in Realtime Compute for Apache
Flink.

Syntax
A IS TRUE

Input parameters
Parameter Data type

A BOOLEAN

Description
If A is true, true is returned. If A is false, false is returned.

Example

5.10.4.14. IS TRUE

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 399

Test data

int1(INT) int2(INT)

255 97

Test statements

SELECT int2 as aa
FROM T1
WHERE int1=255 IS TRUE;

Test results

aa(int)

97

This topic describes how to use the logical operation function IS UNKNOWN of Realtime
Compute.

Syntax
A IS UNKNOWN

Input parameter
Name Data type

A BOOLEAN

Function description
If the value of A (a logical comparison expression) cannot be determined (that is, the value is
neither TRUE nor FALSE), TRUE is returned. If the value of A can be determined (that is,
the value is TRUE or FALSE), FALSE is returned. In normal cases, when A compares two
numbers (for example, 6<>8), the value of A can be determined, which is either TRUE or
FALSE. However, if either operand is not a number, the value of A cannot be determined. IS
UNKNOWN is used to determine whether this situation occurs.

Example 1
Test data

int1 (INT) int2 (INT)

255 97

Test statement

SELECT int2 as aa
FROM T1
WHERE int1=25 IS UNKNOWN;

5.10.4.15. IS UNKNOWN

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

400 > Document Version: 20231114

Test result

aa (INT)

null

Example 2
Test data

int1 (INT) int2 (INT)

255 97

Test statement

SELECT int2 as aa
FROM T1
WHERE int1 > null IS UNKNOWN;

Test result

aa (INT)

97

This topic describes how to use the logical operation function LIKE of Realtime Compute.

Syntax
A LIKE B

Input parameter
Name Data type

A VARCHAR

B VARCHAR

Function description
TRUE is returned if A matches B. Otherwise, FALSE is returned.

Note You can use the percent sign (%) as a wildcard.

Example 1
Test data

int1 (INT) VARCHAR2 (VARCHAR) VARCHAR3 (VARCHAR)

5.10.4.16. LIKE

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 401

90 ss97 97ss

99 ss10 7ho7

Test statement

SELECT int1 as aa
FROM T1
WHERE VARCHAR2 LIKE 'ss%';

Test result

aa (INT)

90

99

Example 2
Test data

int1 (INT) VARCHAR2 (VARCHAR) VARCHAR3 (VARCHAR)

90 ss97 97ss

99 ss10 7ho7

Test statement

SELECT int1 as aa
FROM T1
WHERE VARCHAR3 LIKE '%ho%';

Test result

aa (INT)

99

This topic describes how to use the logical operation function NOT of Realtime Compute.

Syntax
NOT A

Input parameter
Name Data type

A BOOLEAN

5.10.4.17. NOT

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

402 > Document Version: 20231114

Function description
If A is TRUE , FALSE is returned. If A is FALSE , TRUE is returned.

Example
Test data

int2 (INT) int3 (INT)

97 65

Test statement

SELECT int2 as aa
FROM T1
WHERE NOT int3=62;

Test result

aa (INT)

97

This topic describes how to use the logical operation function NOT BETWEEN AND of Realtime
Compute.

Syntax
A NOT BETWEEN B AND C

Input parameter
Name Data type

A DOUBLE, BIGINT, INT, VARCHAR, DATE,
TIMESTAMP, or TIME

B DOUBLE, BIGINT, INT, VARCHAR, DATE,
TIMESTAMP, or TIME

C DOUBLE, BIGINT, INT, VARCHAR, DATE,
TIMESTAMP, or TIME

Function description
This function selects a value not within a data range defined by two other values.

Example 1
Test data

int1 (INT) int2 (INT) int3 (INT)

5.10.4.18. NOT BETWEEN AND

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 403

90 97 80

11 10 7

Test statement

SELECT int1 as aa
FROM T1
WHERE int1 NOT BETWEEN int2 AND int3;

Test result

aa (INT)

11

Example 2
Test data

var1 (VARCHAR) var2 (VARCHAR) var3 (VARCHAR)

d a c

Test statement

SELECT int1 as aa
FROM T1
WHERE var1 NOT BETWEEN var2 AND var3;

Test result

aa (VARCHAR)

d

Example 3
Test data

TIMESTAMP1 (TIMESTAMP) TIMESTAMP2 (TIMESTAMP) TIMESTAMP3 (TIMESTAMP)

1969-07-20 20:17:30 1969-07-20 20:17:40 1969-07-20 20:17:45

Test statement

SELECT TIMESTAMP1 as aa
FROM T1
WHERE TIMESTAMP1 NOT BETWEEN TIMESTAMP2 AND TIMESTAMP3;

Test result

aa (TIMESTAMP)

1969-07-20 20:17:30

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

404 > Document Version: 20231114

This topic describes how to use the logical operation function IN of Realtime Compute.

Syntax
SELECT column_name(s)
FROM table_name
WHERE column_name IN (value1,value2,...)

Input parameter
Name Data type

value1 Constant

value2 Constant

Function description
This function queries records that match the input parameters.

Example
Test data

id (INT) LastName (VARCHAR)

1 Adams

2 Bush

3 Carter

Test statement

SELECT *
FROM T1
WHERE LastName IN ('Adams','Carter')

Test result

id (INT) LastName (VARCHAR)

1 Adams

3 Carter

This topic describes how to use the logical operation function OR of Realtime Compute.

Syntax

5.10.4.19. IN

5.10.4.20. OR

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 405

 A OR B

Input parameter
Name Data type

A BOOLEAN

B BOOLEAN

Function description
FALSE is returned if both A and B are FALSE. Otherwise, TRUE is returned.

Example
Test data

int1 (INT) int2 (INT) int3 (INT)

255 97 65

Test statement

SELECT int2 as aa
FROM T1
WHERE int1=255 OR int3=65;

Test result

aa (INT)

97

This topic describes how to use the logical function IS DISTINCT FROM in Realtime Compute
for Apache Flink.

Syntax
A IS DISTINCT FROM B

Input parameters
Parameter Data type

A Any data type

B Any data type

Description
If the data types or values of A and B are different, true is returned.

5.10.4.21. IS DISTINCT FROM

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

406 > Document Version: 20231114

If the data types and values of A and B are the same, false is returned.
If both A and B are null, false is returned even when their data types are different.

Example
Test data

A(int) B(varchar)

97 97

null sss

null null

Test statements

SELECT
A IS DISTINCT FROM B as 'result'
FROM T1;

Test results

result(BOOLEAN)

true

true

false

This topic describes how to use the logical operation function IS NOT DISTINCT FROM of
Realtime Compute.

Syntax
A IS NOT DISTINCT FROM B

Input parameter
Name Data type

A Any data type

B Any data type

Function description
 FALSE is returned if the data types or values of A and B are different.
 TRUE is returned if the data types and values of A and B are the same.
If both A and B are null, TRUE is returned even when their data types are different.

Example

5.10.4.22. IS NOT DISTINCT FROM

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 407

Test data

A (INT) B (VARCHAR)

97 97

null sss

null null

Test statement

SELECT
A IS NOT DISTINCT FROM B as `result`
FROM T1

Test result

result (BOOLEAN)

FALSE

FALSE

TRUE

This topic describes how to use the logical operation function NOT IN of Realtime Compute.

Syntax
SELECT column_name(s)
FROM table_name
WHERE column_name NOT IN (value1,value2,...)

Input parameter
Name Data type

value1 Constant

value2 Constant

Function description
This function queries records that do not match the input parameters.

Example
Test data

id (INT) LastName (VARCHAR)

1 Adams

5.10.4.23. NOT IN

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

408 > Document Version: 20231114

2 Bush

3 Carter

Test statement

SELECT *
FROM T1
WHERE LastName NOT IN ('Adams','Carter')

Test result

id (INT) LastName (VARCHAR)

2 Bush

This topic describes how to use the conditional function CASE WHEN in Realtime Compute for
Apache Flink.

Syntax
CASE WHEN a THEN b [WHEN c THEN d]* [ELSE e] END

Description
If a is true, b is returned. If a is false and c is true, d is returned. If both a and c are false, e is
returned.

Precautions
If the CASE WHEN function returns a constant string, spaces are added after the string. In the
following example, if the else condition is met, the return value is ios followed by several
spaces.
case when device_type = 'android'
then 'android'
else 'ios'
end as os

You can resolve this issue in the following two ways:
Use the TRIM function to remove spaces. In this example, use the trim(os) field to
replace all the os fields.
Use the CAST function to convert a constant string to a string of the VARCHAR type.

Example
Test data

device_type(VARCHAR)

5.10.5. Conditional functions
5.10.5.1. CASE WHEN

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 409

android

ios

win

Test statements
Use the TRIM function

SELECT
 trim(os), -- The TRIM function is used here.
 CHAR_LENGTH(trim(os)) -- The TRIM function is used here.
from(
 SELECT
 case when device_type = 'android'
 then 'android'
 else 'ios'
end as os
FROM T1
);

Use the CAST function

SELECT
 os,
CHAR_LENGTH(os)
from
(SELECT
 case when device_type = 'android'
 then cast('android' as varchar) -- The CAST function is used here.
 else cast('ios' as varchar) -- The CAST function is used here.
end as os
FROM T1
);

Test results

os(VARCHAR) length(INT)

android 7

ios 3

ios 3

This topic describes how to use the conditional function COALESCE in Realtime Compute.

Syntax
COALESCE(A,B,...)

5.10.5.2. COALESCE

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

410 > Document Version: 20231114

Input parameters
Parameter Data type

A Any data type

B Any data type

Note All values must be of the same type or be NULL. Otherwise, an exception
occurs.

Function description
This function returns the first non-NULL value in the specified list. The return value is of the
same type as the input parameter values. If all values in the list are NULL, the return value is
NULL.

Note The list must contain at least one parameter. Otherwise, an exception
occurs.

Examples
Test data

var1(VARCHAR) var2(VARCHAR)

null 30

Test statements

SELECT COALESCE(var1,var2) as aa
FROM T1

Test results

aa(VARCHAR)

30

This topic describes how to use the conditional function IF in Realtime Compute.

Syntax
T IF(BOOLEAN testCondition, T valueTrue, T valueFalseOrNull)

Note T represents a return value of any type.

Input parameters

5.10.5.3. IF

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 411

Parameter Data type

testCondition BOOLEAN

valueTrue
Any data type (The valueTrue and
valueFalseOrNull parameters must be of the
same type.)

valueFalseOrNull
Any data type (The valueTrue and
valueFalseOrNull parameters must be of the
same type.)

Function description
This function uses the BOOLEAN value of testCondition as the judgment criterion. If
testCondition is true, this function returns valueTrue. If testCondition is false, this function
returns valueFalseOrNull. If testCondition is NULL, it is also regarded as false and this function
returns valueFalseOrNull. If any other parameter is NULL, this function works based on normal
semantics. The data type of the return value is determined by T.

Examples
Test data

int1(INT) int2(INT) str1(VARCHAR) str2(VARCHAR)

1 2 Jack Harry

1 2 Jack null

1 2 null Harry

Test statements

SELECT IF(int1 < int2,str1, str2) as int1
FROM T1

Test results

int1(VARCHAR)

Jack

Jack

null

This topic describes how to use the conditional function IS_ALPHA in Realtime Compute for
Apache Flink.

Syntax
BOOLEAN IS_ALPHA(VARCHAR str)

5.10.5.4. IS_ALPHA

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

412 > Document Version: 20231114

Input parameters
Parameter Data type

str VARCHAR

Description
Checks whether the specified string contains only letters. If yes, the return value is true. If
not, the return value is false.

Example
Test data

e(VARCHAR) f(VARCHAR) g(VARCHAR)

3 asd null

Test statements

SELECT IS_ALPHA(e) as boo1,IS_ALPHA(f) as boo2,IS_ALPHA(g) as boo3
FROM T1;

Test results

boo1(BOOLEAN) boo2(BOOLEAN) boo3(BOOLEAN)

false true false

This topic describes how to use the conditional function IS_DECIMAL in Realtime Compute.

Syntax
BOOLEAN IS_DECIMAL(VARCHAR str)

Input parameters
Parameter Data type

str VARCHAR

Function description
This function checks whether the specified string can be converted to a decimal value. If yes,
the return value is true. If not, the return value is false.

Examples
Test data

a(VARCH
AR)

b(VARCH
AR)

c(VARCH
AR)

d(VARCH
AR)

e(VARCH
AR)

f(VARCHA
R)

g(VARCH
AR)

5.10.5.5. IS_DECIMAL

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 413

1 123 2 11.4445 3 asd null

Test statements

SELECT
IS_DECIMAL(a) as boo1,
IS_DECIMAL(b) as boo2,
IS_DECIMAL(c) as boo3,
IS_DECIMAL(d) as boo4,
IS_DECIMAL(e) as boo5,
IS_DECIMAL(f) as boo6,
IS_DECIMAL(g) as boo7
FROM T1

Test results

boo1(BO
OLEAN)

boo2(BO
OLEAN)

boo3(BO
OLEAN)

boo4(BO
OLEAN)

boo5(BO
OLEAN)

boo6(BO
OLEAN)

boo7(BO
OLEAN)

true true true true true false false

This topic describes how to use the conditional function IS_DIGIT in Realtime Compute.

Syntax
BOOLEAN IS_DIGIT(VARCHAR str)

Input parameters
Parameter Data type

str VARCHAR

Function description
This function checks whether the specified string contains only digits. If yes, the return value
is true. If not, the return value is false. The return value is of the BOOLEAN type.

Examples
Test data

e(VARCHAR) f(VARCHAR) g(VARCHAR)

3 asd null

Test statements

5.10.5.6. IS_DIGIT

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

414 > Document Version: 20231114

SELECT
IS_DIGIT(e) as boo1,
IS_DIGIT(f) as boo2,
IS_DIGIT(g) as boo3
FROM T1

Test results

boo1(BOOLEAN) boo2(BOOLEAN) boo3(BOOLEAN)

true false false

This topic describes how to use the conditional function NULLIF in Realtime Compute.

Syntax
NULLIF(A,B)

Input parameters
Parameter Data type

A INT

B INT

Function description
This function returns NULL if the two specified parameters have the same value, and returns
the value of the first parameter if the parameters have different values.

Examples
Test data

var1(INT) var2(INT)

30 30

Test statements

SELECT NULLIF(var1,var2) as aa
FROM T1

Test results

aa(INT)

null

5.10.5.7. NULLIF

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 415

This topic describes how to use the table-valued function GENERATE_SERIES in Realtime
Compute.

Syntax
GENERATE_SERIES(INT from, INT to)

Input parameters
Parameter Data type

from
The lower bound of a consecutive series of values
(including the lower bound) to be generated. This
parameter is of the INT type.

to
The upper bound of a consecutive series of
values (excluding the upper bound) to be
generated. This parameter is of the INT type.

Function description
This function generates a consecutive series of values from the lower bound to the upper
bound minus one.

Examples
Test data

s(INT) e(INT)

1 3

-2 1

Test statements

SELECT s, e, v
FROM T1, lateral table(GENERATE_SERIES(s, e))
as T(v)

Test results

s(INT) e(INT) v(INT)

1 3 1

1 3 2

-2 1 -2

-2 1 -1

5.10.6. Table-valued functions
5.10.6.1. GENERATE_SERIES

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

416 > Document Version: 20231114

-2 1 -0

This topic describes how to use the table-valued function JSON_TUPLE in Realtime Compute
for Apache Flink.

Important Only Blink supports JSON_TUPLE. Flink does not support JSON_TUPLE.

Syntax
JSON_TUPLE(str, path1, path2 ..., pathN)

Input parameters
Parameter Data type Description

str VARCHAR The JSON string.

path1 to pathN VARCHAR A path string, which does not
start with a dollar sign ($).

Description
Returns the value represented by each path string from the JSON string.

Example
Test data

d(VARCHAR) s(VARCHAR)

{"qwe":"asd","qwe2":"asd2","qwe3":"asd3"} qwe3

{"qwe":"asd4","qwe2":"asd5","qwe3":"asd3"} qwe2

Test statements

SELECT d, v
FROM T1, lateral table(JSON_TUPLE(d, 'qwe', s))
AS T(v);

Test results

d(VARCHAR) v(VARCHAR)

{"qwe":"asd","qwe2":"asd2","qwe3":"asd3"} asd

{"qwe":"asd","qwe2":"asd2","qwe3":"asd3"} asd3

{"qwe":"asd4","qwe2":"asd5","qwe3":"asd3"} asd4

{"qwe":"asd4","qwe2":"asd5","qwe3":"asd3"} asd5

5.10.6.2. JSON_TUPLE

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 417

This topic describes how to use the table-valued function STRING_SPLIT in Realtime Compute
for Apache Flink.

Syntax
string_split(string, separator)

Input parameters
Parameter Type Description

string VARCHAR The string that you want to
split.

separator VARCHAR

The specified delimiter.

Note The delimiter
must be a single string.

Description
Splits a string into rows of substrings based on a specified delimiter and returns a table that
consists of rows of substrings. Before you use this function, take note of the following items:

If the value of the string is null, this function returns an empty row.
If the string contains two or more consecutive delimiters, this function returns a zero-length
substring.
If the string does not contain the specified delimiter, this function returns only this string.

Example
Test data Table 1. T1

d(varchar) s(varchar)

abc-bcd -

hhh -

Test statements

select d,v
from T1,
lateral table(string_split(d, s)) as T(v);

Test results

d(varchar) v(varchar)

abc-bcd abc

abc-bcd bcd

hhh hhh

5.10.6.3. STRING_SPLIT

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

418 > Document Version: 20231114

This topic describes how to use the table-valued function MULTI_KEYVALUE in Realtime
Compute.

Note This function is only available in Realtime Compute V2.2.2 and later.

Syntax
MULTI_KEYVALUE(VARCHAR str, VARCHAR split1, VARCHAR split2, VARCHAR key_name1, VARCHAR
key_name2, ...)

Input parameters
Parameter Data type Description

str VARCHAR The key-value pairs in a string.

split1 VARCHAR

The separator of key-value
pairs. If split1 is null, a
whitespace is used as the
separator between key-value
pairs. If the length of split1 is
greater than 1, split1 only
represents a set of separators,
in which each character
represents a valid separator.

split2 VARCHAR

The key-value separator. If
split2 is null, a whitespace is
used as the key-value
separator. If the length of split2
is greater than 1, split2 only
represents a set of separators,
in which each character
represents a valid separator.

key_name1, key_name2, ... VARCHAR The list of keys whose values
you want to obtain.

Description
Parses the key-value pairs in a string based on the key-value pair separator and key-value
separator, and then returns a list of values for the key names such as key_name1 and
key_name2. If a key_name does not exist, the return value is null.

Example
Test data

str (VARCHAR) split1
(VARCHAR)

split2
(VARCHAR)

key1
(VARCHAR)

key2
(VARCHAR)

k1=v1;k2=v2 ; = k1 k2

null ; = k1 k2

5.10.6.4. MULTI_KEYVALUE

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 419

k1:v1;k2:v2 ; : k1 k3

k1:v1;k2:v2 ; = k1 k2

k1:v1;k2:v2 , : k1 k2

k1:v1;k2=v2 ; : k1 k2

k1:v1abck2:v2 cab : k1 k2

k1:v1;k2=v2 ; := k1 k2

k1:v1 k2:v2 null : k1 k2

k1 v1;k2 v2 ; null k1 k2

Test statements

SELECT c1, c2
FROM T1, lateral table(MULTI_KEYVALUE(str, split1, split2, key1, key2))
as T(c1, c2);

Test results

c1 (VARCHAR) c2 (VARCHAR)

v1 v2

null null

v1 null

null null

null null

v1 null

v1 v2

v1 v2

v1 v2

v1 v2

This topic describes how to use the type conversion function CAST in Realtime Compute for
Apache Flink.

Syntax
CAST(A AS type)

5.10.7. Type conversion function
5.10.7.1. CAST

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

420 > Document Version: 20231114

Input parameters
Parameter Data type

A For more information, see Data type conversion.

Description
Converts the value of the input parameter A to a specified type. If the type after conversion is
not consistent with the field type in the destination table, Insert into: Query result and
target table 'test_result' field type(s) not match. is reported.

Example
Test data

var1(VARCHAR) var2(INT)

1000 30

Test statements

SELECT CAST(var1 AS INT) as aa
FROM T1;

Test results

aa(INT)

1000

This topic describes how to use the aggregate function AVG in Realtime Compute for Apache
Flink. In Flink SQL, the AVG function returns the average value of all values in a specified
expression.

Syntax
AVG(A)

Input parameters
Parameter Data type

A TINYINT, SMALLINT, INT, BIGINT, FLOAT,
DECIMAL, or DOUBLE

Description
Returns the average value of all the values in a specified expression.

5.10.8. Aggregate functions
5.10.8.1. AVG

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 421

Note The return value is of the DOUBLE type by default. If the field value in the
result table is of a type other than DOUBLE, you must use CAST to convert the data type.

Example
Test data

var1(INT) var2(INT)

4 30

6 30

Test statements

SELECT AVG(var1) as aa
FROM T1;

Test results

aa(INT)

5

This topic describes how to use the aggregate function CONCAT_AGG in Realtime Compute. In
Flink SQL, the CONCAT_AGG function concatenates the strings of all specified fields and
returns a new string.

Syntax
CONCAT_AGG([linedelimiter,] value)

Input parameters
Parameter Data type

linedelimiter (optional) Only a string constant is currently supported.

Function description
This function concatenates the strings of all specified fields and returns a new string. The
default connector is \n . The return value is of the VARCHAR type.

Examples
Test data

c(VARCHAR)

Hi

Hi

5.10.8.2. CONCAT_AGG

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

422 > Document Version: 20231114

Hi

Hi

Hi

Hi

Hi

Hi

Hi

Hi

Test statements

SELECT
concat_agg(c) as var1,
concat_agg('-', c) as var2
FROM MyTable
GROUP BY c

Test results

var1(VARCHAR) var2(VARCHAR)

Hi\nHi\nHi\nHi\nHi\nHi\nHi\nHi\nHi\nHi Hi-Hi-Hi-Hi-Hi-Hi-Hi-Hi-Hi-Hi

This topic describes how to use the aggregate function COUNT in Realtime Compute for
Apache Flink. In Flink SQL, the COUNT function returns the number of rows in a given column.

Syntax
COUNT(A)

Input parameters
Parameter Data type

A
Supported data types: TINYINT, SMALLINT, INT, BIGINT, FLOAT,
DECIMAL, DOUBLE, BOOLEAN, and VARCHAR.
Unsupported data types: DATE, TIME, TIMESTAMP, and
VARBINARY.

Example
Test data

var1(VARCHAR)

5.10.8.3. COUNT

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 423

1000

100

10

1

Test statements

SELECT COUNT(var1) as aa
FROM T1;

Test results

aa(BIGINT)

4

This topic describes how to use the aggregate function FIRST_VALUE in Realtime Compute. In
Flink SQL, the FIRST_VALUE function returns the first non-null record of a data stream.

Syntax
T FIRST_VALUE(T value)
T FIRST_VALUE(T value, Long order)

Input parameters
Parameter Data type

value Any data type (The input parameters must be of
the same type.)

order INT

Function description
This function returns the first non-null record of a data stream. A record with the smallest
order value is obtained as the first non-null record.

Examples
Test data

a(BIGINT) b(INT) c(VARCHAR)

1L 1 "Hello"

2L 2 "Hello"

3L 3 "Hello"

5.10.8.4. FIRST_VALUE

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

424 > Document Version: 20231114

4L 4 "Hello"

5L 5 "Hello"

6L 6 "Hello"

7L 7 "Hello World"

8L 8 "Hello World"

20L 20 "Hello World"

Test statements

SELECT c,
 first_value(b)
OVER (
PARTITION BY c
ORDER BY PROCTIME() RANGE UNBOUNDED preceding
) as var1
from T1

Test results

c(VARCHAR) var1(INT)

Hello 1

Hello 1

Hello 1

Hello 1

Hello 1

Hello 1

Hello World 7

Hello World 7

Hello World 7

This topic describes how to use the aggregate function LAST_VALUE in Realtime Compute for
Apache Flink. In Flink SQL, the LAST_VALUE function returns the last non-null record of a data
stream.

Syntax
T LAST_VALUE(T value)
T LAST_VALUE(T value, BIGINT order)

5.10.8.5. LAST_VALUE

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 425

Input parameters
Parameter Data type

value

Any data type

Note All input parameters must be of the same data
type.

order BIGINT

Description
Returns the last non-null record of a data stream. The row of LAST_VALUE is determined
based on the order parameter and the record with the largest order value is used as
LAST_VALUE.

Example 1
Test data

a(BIGINT) b(INT) c(VARCHAR)

1L 1 "Hello"

2L 2 "Hello"

3L 3 "Hello"

4L 4 "Hello"

5L 5 "Hello"

6L 6 "Hello"

7L 7 "Hello World"

8L 8 "Hello World"

20L 20 "Hello World"

Test statements

SELECT c,
 LAST_VALUE(b)
OVER (
PARTITION BY c
ORDER BY PROCTIME() RANGE UNBOUNDED PRECEDING
) AS var1
FROM T1;

Test results

c(VARCHAR) var1(INT)

"Hello" 1

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

426 > Document Version: 20231114

"Hello" 2

"Hello" 3

"Hello" 4

"Hello" 5

"Hello" 6

"Hello World" 7

"Hello World" 8

"Hello World" 20

Example 2
Test data

a(BIGINT) b(INT) c(VARCHAR) order (BIGINT)

1L 1 "Hello" 5

2L 2 "Hello" 5

3L 3 "Hello" 6

4L 4 "Hello" 5

5L 5 "Hello" 6

6L 6 "Hello" 5

7L 7 "Hello World" 4

8L 8 "Hello World" 8

20L 20 "Hello World" 9

Test statements

SELECT c,
 LAST_VALUE(b,order)
OVER (
PARTITION BY c
ORDER BY PROCTIME() RANGE UNBOUNDED PRECEDING
) AS var1
FROM T1;

Test results

c(VARCHAR) var1(INT)

"Hello" 1

"Hello" 1

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 427

"Hello" 3

"Hello" 3

"Hello" 3

"Hello" 3

"Hello World" 7

"Hello World" 8

"Hello World" 20

This topic describes how to use the aggregate function MAX in Realtime Compute. In Flink
SQL, the MAX function returns the maximum value among all input values.

Syntax
MAX(A)

Input parameters
Parameter Data type

A

TINYINT, SMALLINT, INT, BIGINT, FLOAT,
DECIMAL, DOUBLE, BOOLEAN, or VARCHAR

Note The following data types are not
supported: DATE, TIME, TIMESTAMP, and
VARBINARY.

Function description
This function returns the maximum value among all input values.

Examples
Test data

var1(INT)

4

8

Test statements

SELECT MAX(var1) as aa
FROM T1

Test results

5.10.8.6. MAX

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

428 > Document Version: 20231114

aa(INT)

8

This topic describes how to use the aggregate function MIN in Realtime Compute for Apache
Flink. In Flink SQL, the MIN function returns the minimum value of all input values.

Syntax
MIN(A)

Input parameters
Parameter Data type

A
Supported data types: TINYINT, SMALLINT, INT, BIGINT, FLOAT,
DECIMAL, DOUBLE, BOOLEAN, and VARCHAR.
Unsupported data types: DATE, TIME, TIMESTAMP, and
VARBINARY.

Description
Returns the minimum value of all input values.

Example
Test data

var1(INT)

4

8

Test statements

SELECT MIN(var1) as aa
FROM T1;

Test results

aa(INT)

4

This topic describes how to use the aggregate function SUM in Realtime Compute for Apache
Flink. In Flink SQL, the SUM function returns the sum of all input values.

Syntax

5.10.8.7. MIN

5.10.8.8. SUM

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 429

SUM(A)

Input parameters
Parameter Data type

A TINYINT, SMALLINT, INT, BIGINT, FLOAT, DECIMAL, or DOUBLE

Description
Returns the sum of all input values.

Example
Test data

var1(INT)

4

4

Test statements

SELECT sum(var1) as aa
FROM T1;

Test results

aa(INT)

8

This topic describes how to use the aggregate function VAR_POP in Realtime Compute for
Apache Flink. In Flink SQL, the VAR_POP function returns the population variance of all input
values in a specified expression.

Syntax
T VAR_POP(T value)

Input parameters
Parameter Data type

value Numeric type, such as BIGINT or DOUBLE

Description
Returns the population variance of all input values.

Example

5.10.8.9. VAR_POP

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

430 > Document Version: 20231114

Test data

a(BIGINT) c(VARCHAR)

2900 Hi

2500 Hi

2600 Hi

3100 Hello

11000 Hello

Test statements

SELECT
VAR_POP(a) as `result`,
c
FROM MyTable
GROUP BY c;

Test results

result(BIGINT) c

28889 Hi

15602500 Hello

This topic describes how to use the aggregate function STDDEV_POP in Realtime Compute. In
Flink SQL, the STDDEV_POP function returns the population standard deviation of a set of
values.

Syntax
T STDDEV_POP(T value)

Input parameters
Parameter Data type

value BIGINT or DOUBLE

Function description
This function returns the population standard deviation of a set of values.

Examples
Test data

a(DOUBLE) c(VARCHAR)

5.10.8.10. STDDEV_POP

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 431

0 Hi

1 Hi

2 Hi

3 Hi

4 Hi

5 Hi

6 Hi

7 Hi

8 Hi

9 Hi

Test statements

SELECT c, STDDEV_POP(a) as dou1
FROM MyTable
GROUP BY c

Test results

c(VARCHAR) dou1(DOUBLE)

Hi 2.8722813232690143

This topic describes how to use the UUID function in Realtime Compute for Apache Flink. In
Flink SQL, the UUID function returns a universally unique identifier.

Syntax
VARCHAR UUID()

Description
Returns a universally unique identifier.

Example
Test statements

SELECT uuid() as `result`
FROM T1;

Test results

5.10.9. Other functions
5.10.9.1. UUID

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

432 > Document Version: 20231114

result(VARCHAR)

a364e414-e68b-4e5c-9166-65b3a153e257

This topic describes how to use the DISTINCT function in Realtime Compute for Apache Flink.
The DISTINCT function is used in SELECT statements to remove duplicate query results.

Syntax
SELECT DISTINCT expressions
FROM tables
...

 DISTINCT must be placed before expressions. When you use DISTINCT with other
functions at the same time, you must place the DISTINCT function at the beginning of a
statement, for example, concat_agg(DISTINCT ',' ,device_id) .
 expressions can be one or more expressions, specific columns, or any other valid
expressions such as functions.

Example
Test statements
The following example shows how to use DISTINCT in Flink SQL:

CREATE TABLE distinct_tab_source(
 FirstName VARCHAR,
 LastName VARCHAR
)WITH(
 type='random'
) ;

CREATE TABLE distinct_tab_sink(
 FirstName VARCHAR,
 LastName VARCHAR
)WITH(
 type = 'print'
) ;

INSERT INTO distinct_tab_sink
SELECT DISTINCT FirstName, LastName -- Remove duplicate records based on the FirstNam
e and LastName columns.
FROM distinct_tab_source;

Test data

FirstName LastName

SUNS HENGRAN

SUN JINCHENG

SUN SHENGRAN

5.10.9.2. DISTINCT

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 433

SUN SHENGRAN

Test results

Note
The test data contains four records. DISTINCT FirstName, LastName removes
one duplicate record that contains SUNS,SHENGRAN and returns three unique
records.
The SUNS,HENGRAN and SUN,SHENGRAN records are retained. This indicates that
 DISTINCT FirstName, LastName processes the FirstName and LastName
columns separately, and does not concatenate them for deduplication.

Alternative for DISTINCT
 GROUP BY in SQL statements also provides a deduplication function similar to that of
 DISTINCT . The following example shows the syntax of GROUP BY :
SELECT expressions
FROM tables
GROUP BY expressions
;

The following example writes an SQL multi-insert query that has an equivalent effect to that
of the DISTINCT function:

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

434 > Document Version: 20231114

CREATE TABLE distinct_tab_source(
 FirstName VARCHAR,
 LastName VARCHAR
)WITH(
 type='random'
);

CREATE TABLE distinct_tab_sink(
 FirstName VARCHAR,
 LastName VARCHAR
)WITH(
 type = 'print'
);

CREATE TABLE distinct_tab_sink2(
 FirstName VARCHAR,
 LastName VARCHAR
)WITH(
 type = 'print'
);

INSERT INTO distinct_tab_sink
 SELECT DISTINCT FirstName, LastName -- Remove duplicate records based on the FirstN
ame and LastName columns.
 FROM distinct_tab_source;

INSERT INTO distinct_tab_sink2
 SELECT FirstName, LastName
 FROM distinct_tab_source
 GROUP BY FirstName, LastName; -- Remove duplicate records based on the
FirstName and LastName columns.

The following figure shows that the results of GROUP BY and DISTINCT functions are the same
when the same test data is used. Therefore, the semantics of GROUP BY and DISTINCT are
equivalent.

Use of DISTINCT in the aggregate function COUNT
The use of DISTINCT enables the aggregate function COUNT to count the number of
records after deduplication.
COUNT(DISTINCT expression)

Important expression supports only a single expression.

Example of the COUNT DISTINCT syntax

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 435

Test statements

CREATE TABLE distinct_tab_source(
 FirstName VARCHAR,
 LastName VARCHAR
)WITH(
 type='random'
) ;

CREATE TABLE distinct_tab_sink(
 cnt BIGINT ,
 distinct_cnt BIGINT
)WITH(
 type = 'print'
) ;

INSERT INTO distinct_tab_sink
 SELECT
 COUNT(FirstName), -- Duplicate records are not removed.
 COUNT(DISTINCT FirstName) -- Duplicate records are removed based on the
FirstName column.
 FROM distinct_tab_source;

Test data

FirstName LastName

SUNS HENGRAN

SUN JINCHENG

SUN SHENGRAN

SUN SHENGRAN

Test results

This topic describes how to build a development environment and use user-defined
extensions (UDXs) in Realtime Compute for Apache Flink.

5.11. UDXs
5.11.1. Overview

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

436 > Document Version: 20231114

Important
Only Realtime Compute for Apache Flink in exclusive mode supports UDXs.
Blink is developed based on Apache Flink SQL by Alibaba Cloud Realtime Compute
for Apache Flink to improve computing performance. UDXs can be used only in
Blink.

UDX type
Realtime Compute for Apache Flink supports three types of UDXs, as described in the
following table.

UDX type Description

UDF
User-defined scalar function. The relationship between the
input and output of UDFs is one-to-one mapping, which
indicates that one value is returned each time a UDF reads
one row of data.

UDAF

User-defined aggregation function. The relationship
between the input and output of UDAFs is many-to-one
mapping. A UDAF aggregates multiple input records into
one output record. A UDAF can be used with the GROUP BY
clause of SQL. For more information, see Aggregate
functions.

UDTF User-defined table-valued function. When a UDTF is called,
it generates multiple columns or rows of data.

Example
Realtime Compute for Apache Flink provides an example of a UDX to facilitate your business
development. This example shows how to develop a UDF, UDAF, and UDTF.

Note
In this example, a development environment of the required version is configured.
You do not need to build another development environment.
The example provides Maven projects. You can use IntelliJ IDEA for development.
For more information, see Develop a job.

Realtime Compute for Apache Flink V3.0
Blink_UDX_3x
Realtime Compute for Apache Flink V2.0
Blink_UDX_2x
Realtime Compute for Apache Flink V1.0
Blink_UDX_1x

Build a development environment

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 437

https://www.alibabacloud.com/help/en/maxcompute/user-guide/aggregate-functions
https://github.com/RealtimeCompute/blink_udx_3x
https://github.com/RealtimeCompute/blink_udx_2x
https://github.com/RealtimeCompute/blink_udx_1x

The development of UDXs depends on the following JAR packages. You can download the
packages as required.

Realtime Compute for Apache Flink versions earlier than V3.2.1
flink-streaming-java_2.11
flink-table_2.11
flink-core-blink-2.2.4

Realtime Compute for Apache Flink V3.2.1 and later
Add a POM dependency based on your open source software version. Download and view
the example of a complete dependency.

Note
If you want to use Snapshot, you can add a POM dependency based on your Snapshot
version.

Register and use resources
1. Log on to the Realtime Compute development platform.
2. In the top navigation bar, click Development.
3. In the left-side navigation pane, click the Resources tab.
4. In the upper-right corner of the Resources pane, click Create Resource.
5. In the Upload Resource dialog box, configure the resource parameters.

Parameter Description

Location

You can upload JAR packages only from your on-premises
machine in the Realtime Compute for Apache Flink console.

Note
The maximum size of a JAR package that can be uploaded
from your on-premises machine is 300 MB. If the JAR
package exceeds 300 MB, you must upload it to the Object
Storage Service (OSS) bucket that is bound to your cluster or
use an API to upload it.

Resource Click Upload Resource to select the resource that you want to
reference.

Select Resource Name Enter a name for the resource.

Resource Description Enter a description for the resource.

Authorization type Select the type of the resource: JAR, DICTIONARY, or PYTHON.

6. In the Resources pane, find the new resource, and move the pointer over More in the
Actions column.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

438 > Document Version: 20231114

http://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/98378/cn_zh/1543327398632/flink-streaming-java_2.11-blink-2.2.4.jar
http://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/98378/cn_zh/1543327437386/flink-table_2.11-blink-2.2.4.jar
http://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/98378/cn_zh/1543326995841/flink-core-blink-2.2.4.jar
https://search.maven.org/search?q=com.alibaba.blink
http://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/111995/cn_zh/1553501574644/pom.xml
https://oss.sonatype.org/content/repositories/snapshots/com/alibaba/blink/flink-core/
https://stream-ap-southeast-3.console.aliyun.com

7. In the drop-down list, select Reference.
8. In the code editor, declare the UDX at the beginning. The following statement is an

example:

CREATE FUNCTION stringLengthUdf AS 'com.hjc.test.blink.sql.udx.StringLengthUdf';

Types of parameters and return values
When you define Java UDXs in Realtime Compute for Apache Flink, you can use Java data
types in parameters and return values. The following table lists the mappings between
Realtime Compute for Apache Flink and Java data types.

Data type of Realtime Compute for Apache
Flink Java data type

TINYINT java.lang.Byte

SMALLINT java.lang.Short

INT java.lang.Integer

BIGINT java.lang.Long

FLOAT java.lang.Float

DOUBLE java.lang.Double

DECIMAL java.math.BigDecimal

BOOLEAN java.lang.Boolean

DATE java.sql.Date

TIME java.sql.Time

TIMESTAMP java.sql.Timestamp

CHAR java.lang.Character

STRING java.lang.String

VARBINARY java.lang.byte[]

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 439

ARRAY Not supported

MAP Not supported

Obtain parameters of UDXs
UDXs support an optional open(FunctionContext context) method. You can use
 FunctionContext to pass custom configuration items.
For example, you must add the following two parameters to your job:

testKey1=lincoln
test.key2=todd

The following example shows how to use context.getJobParameter in the open method to
obtain parameters of a UDTF.

public void open(FunctionContext context) throws Exception {
 String key1 = context.getJobParameter("testKey1", "empty");
 String key2 = context.getJobParameter("test.key2", "empty");
 System.err.println(String.format("end open: key1:%s, key2:%s", key1, key2));
}

Note
For more information, see Job parameters.

This topic describes how to build a development environment, write business logic code, and
publish a user-defined scalar function (UDF) in Realtime Compute for Apache Flink.

Definition
A UDF maps zero, one, or more scalar values to a new scalar value.

Build a development environment
For more information about how to build a development environment, see Build a
development environment.

Write business logic code
To define a UDF, you must extend the ScalarFunction class by implementing the eval
method. The open and close methods are optional.

5.11.2. UDF

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

440 > Document Version: 20231114

Important
UDFs return the same output for the same input by default. However, a UDF where an
external service is called may return different output results even if the input values are
the same. If a UDF cannot generate the same output for the same input, we recommend
that you use the override isDeterministic() method to make it return false .
Otherwise, the output may not meet your expectations in some cases. For example, a
UDF operator moves forward.

The following sample code is written in Java:

package com.hjc.test.blink.sql.udx;

import org.apache.flink.table.functions.FunctionContext;
import org.apache.flink.table.functions.ScalarFunction;

public class StringLengthUdf extends ScalarFunction {
 // The open method is optional.
 // To use the open method, you must add 'import
org.apache.flink.table.functions.FunctionContext;' to the code.
 @Override
 public void open(FunctionContext context) {
 }
 public long eval(String a) {
 return a == null ? 0 : a.length();
 }
 public long eval(String b, String c) {
 return eval(b) + eval(c);
 }
 // The close method is optional.
 @Override
 public void close() {
 }
}

Write SQL statements
You can write SQL statements in a specified class. The following example shows the SQL
statements in a UDX:

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 441

-- udf str.length()
CREATE FUNCTION stringLengthUdf AS 'com.hjc.test.blink.sql.udx.StringLengthUdf';

create table sls_stream(
 a int,
 b int,
 c varchar
) with (
 type='sls',
 endPoint='<yourEndpoint>',
 accessKeyId='<yourAccessId>',
 accessKeySecret='<yourAccessSecret>',
 startTime = '2017-07-04 00:00:00',
 project='<yourProjectName>',
 logStore='<yourLogStoreName>',
 consumerGroup='consumerGroupTest1'
);

create table rds_output(
 id int,
 len bigint,
 content VARCHAR
) with (
 type='rds',
 url='yourDatabaseURL',
 tableName='<yourDatabaseTableName>',
 userName='<yourDatabaseUserName>',
 password='<yourDatabasePassword>'
);

insert into rds_output
select
 a,
 stringLengthUdf(c),
 c as content
from sls_stream;

Register and use resources
1. Log on to the Realtime Compute development platform.
2. In the top navigation bar, click Development.
3. In the left-side navigation pane, click the Resources tab.
4. In the upper-right corner of the Resources pane, click Create Resource.
5. In the Upload Resource dialog box, configure the resource parameters.

Parameter Description

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

442 > Document Version: 20231114

https://stream-ap-southeast-3.console.aliyun.com

Location

You can upload only JAR packages from your on-premises
machine in the Realtime Compute for Apache Flink console.

Note
The maximum size of a JAR package that can be uploaded
from your on-premises machine is 300 MB. If the size of the
JAR package exceeds 300 MB, you must upload the package
to the Object Storage Service (OSS) bucket that is bound to
your cluster or use an API to upload the package.

Resource Click Upload Resource to select the resource that you want to
reference.

Resource Name Enter a name for the resource.

Resource Description Enter a description for the resource.

Resource Type Select the type of the resource. Valid values: JAR, DICTIONARY,
and PYTHON.

6. In the Resources pane, find the new resource, and move the pointer over More in the
Actions column.

7. In the drop-down list, select Reference.
8. In the code editor, declare the UDX at the beginning. The following statement is an

example:

CREATE FUNCTION stringLengthUdf AS 'com.hjc.test.blink.sql.udx.StringLengthUdf';

Publish and use a UDF
Click Publish on the Development page for the job where you want to publish a UDF. Then,
find the job on the Administration page and click Start in the Actions column to publish the
UDF.

FAQ
Q: Why does the random number generator always generate the same value at runtime?
A: If no input parameters are passed to a UDX and you do not declare it as nondeterministic,
the UDX may be optimized during compilation to return a constant value. To avoid this issue,
you can use the override isDeterministic() method to make it return false .

This topic describes how to build a development environment, write business logic code, and
publish a user-defined aggregation function (UDAF) in Realtime Compute for Apache Flink.

Definition
A UDAF aggregates multiple values into a single value.

5.11.3. UDAF

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 443

Methods of the UDAF abstract class

Note
A UDAF can be implemented in Java or Scala. However, we recommend that you use Java
because Scala data types may cause unnecessary performance overhead.

The following code shows the core methods of the AggregateFunction class.
createAccumulator and getValue methods

/*
* @param <T> The type of the output returned by a UDAF.
* @param <ACC> The accumulator type of a UDAF. An accumulator stores the intermediate
aggregation results of a UDAF. You can design an accumulator for each UDAF as require
d.
*/
public abstract class AggregateFunction<T, ACC> extends UserDefinedFunction {
/*
* Initialize the accumulator in AggregateFunction.
* The system calls the following method before it aggregates data for the first time.

*/
public ACC createAccumulator();
/*
* The system calls the following method after each aggregation is complete.
*/
public T getValue(ACC accumulator);
}

Note
The createAccumulator and getValue methods can be defined in the
AggregateFunction abstract class.
A UDAF must contain at least one accumulate method.

accumulate method

public void accumulate(ACC accumulator, ...[user input]...);

Note
You must implement an accumulate method to describe how to compute input
data and update an accumulator to the aggregation result.
The first parameter of the accumulate method must be an accumulator of the
ACC type defined in AggregateFunction. When the system is running, the runtime
code sends the previous value in the accumulator and the specified upstream
data to the accumulate method for aggregation. The upstream data can be of
any type and can contain any number of data records.

retract and merge methods

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

444 > Document Version: 20231114

The createAccumulator, getValue, and accumulate methods can be used together to design
a basic UDAF. However, Realtime Compute for Apache Flink also requires the retract and
merge methods in some special scenarios.
In most scenarios, computing is early firing for an infinite stream. To refine early fired
results, you can implement a retract method. The SQL optimizer automatically determines
the conditions in which data needs to be retracted and the operations that are needed to
process data marked with retract tags. You must implement a retract method to retract
input data.

public void retract(ACC accumulator, ...[user input]...);

Note
The retract method is the reverse operation of the accumulate method. For
example, in a count UDAF, the number of data records in the computing result
increases by one each time the accumulate method is called to process a data
record, whereas the number of data records in the result decreases by one each
time the retract method is called to process a data record.
Similar to the accumulate method, the first parameter of the retract method
must be an accumulator of the ACC type defined in AggregateFunction. When the
system is running, the runtime code sends the previous value in the accumulator
and the specified upstream data to the retract method for aggregation. The
upstream data can be of any type and contain any number of data records.

Realtime Compute for Apache Flink requires the merge method in some scenarios. For
example, if you use a session window to aggregate data, you must use the merge method.
Realtime Compute for Apache Flink can process out-of-order data. Newly arrived data may
fill the gap between two separate sessions, which results in the merge of the two sessions.
In this case, you must use the merge method to integrate multiple accumulators into one
accumulator.

public void merge(ACC accumulator, Iterable<ACC> its);

Note
The first parameter of the merge method must be an accumulator of the ACC
type defined in AggregateFunction. After the merge method is executed, the
state data of AggregateFunction is stored in the first accumulator.
The second parameter of the merge method is an iterator of one or more
accumulators of the ACC type.

Build a development environment
For more information about how to build a development environment, see Build a
development environment.

Write business logic code
The following Java code is an example:

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 445

import org.apache.flink.table.functions.AggregateFunction;

public class CountUdaf extends AggregateFunction<Long, CountUdaf.CountAccum> {
 // Define the data schema of the accumulator that stores the state data of a count
UDAF.
 public static class CountAccum {
 public long total;
 }

 // Initialize the accumulator of the count UDAF.
 public CountAccum createAccumulator() {
 CountAccum acc = new CountAccum();
 acc.total = 0;
 return acc;
 }

 // Call the getValue method to obtain the result of the count UDAF from the accumul
ator that stores the state data of the count UDAF.
 public Long getValue(CountAccum accumulator) {
 return accumulator.total;
 }

 // Call the accumulate method to update the accumulator that stores the state data
of the count UDAF based on the input data.
 public void accumulate(CountAccum accumulator, Object iValue) {
 accumulator.total++;
 }

 public void merge(CountAccum accumulator, Iterable<CountAccum> its) {
 for (CountAccum other : its) {
 accumulator.total += other.total;
 }
 }
}

Note
The open and close methods are optional for a subclass of AggregateFunction. For more
information, see the examples of UDF or UDTF.

Register and use resources
1. Log on to the Realtime Compute development platform.
2. In the top navigation bar, click Development.
3. In the left-side navigation pane, click the Resources tab.
4. In the upper-right corner of the Resources pane, click Create Resource.
5. In the Upload Resource dialog box, configure resource parameters.

Parameter Description

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

446 > Document Version: 20231114

https://stream-ap-southeast-3.console.aliyun.com

Location

You can upload Java Archive (JAR) packages only from your on-
premises machine in the Realtime Compute for Apache Flink
console.

Note
The maximum size of a JAR package that can be uploaded
from your on-premises machine is 300 MB. If the JAR
package exceeds 300 MB, you must upload it to the Object
Storage Service (OSS) bucket that is bound to your cluster or
use an API to upload it.

Resource Click Upload Resource to select the resource that you want to
reference.

Resource Name Enter a name for the resource.

Resource Description Enter a resource description.

Resource Type Select the type of the resource. Valid values: JAR, DICTIONARY,
and PYTHON.

6. In the Resources pane, find the new resource, and move the pointer over More in the
Actions column.

7. In the drop-down list, select Reference.
8. In the code editor, declare the UDX. The following statement is an example:

CREATE FUNCTION stringLengthUdf AS 'com.hjc.test.blink.sql.udx.StringLengthUdf';

Publish and use a UDAF
For more information about how to publish and use a UDAF, see Publish a job and Start a job.

Example

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 447

-- Use a UDAF to calculate the count.
CREATE FUNCTION countUdaf AS 'com.hjc.test.blink.sql.udx.CountUdaf';

create table sls_stream(
 a int,
 b bigint,
 c varchar
) with (
 type='sls',
 endPoint='yourEndpoint',
 accessKeyId='yourAccessId',
 accessKeySecret='yourAccessSecret',
 startTime='2017-07-04 00:00:00',
 project='<yourPorjectName>',
 logStore='stream-test2',
 consumerGroup='consumerGroupTest3'
);

create table rds_output(
 len1 bigint,
 len2 bigint
) with (
 type='rds',
 url='yourDatabaseURL',
 tableName='<yourDatabaseTableName>',
 userName='<yourDatabaseUserName>',
 password='<yourDatabasePassword>'
);

insert into rds_output
select
 count(a),
 countUdaf(a)
from sls_stream;

This topic describes how to build a development environment, write code, and publish a user-
defined table-valued function (UDTF) in Realtime Compute for Apache Flink.

Definition
Similar to a user-defined scalar function (UDF), a UDTF uses zero, one, or multiple scalar
values as input parameters (including variable-length parameters). Different from a UDF, a
UDTF returns any number of rows, rather than a single value. The returned rows can consist
of one or more columns.

Build a development environment
For more information, see Build a development environment.

Write code that implements business logic
A UDTF needs to implement the eval method in the TableFunction class. The open and close
methods are optional. The following Java code is an example:

5.11.4. UDTF

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

448 > Document Version: 20231114

package com.hjc.test.blink.sql.udx;

import org.apache.flink.table.functions.FunctionContext;
import org.apache.flink.table.functions.TableFunction;

public class SplitUdtf extends TableFunction<String> {

 // The open method is optional. To use the open method, you must add 'import org.ap
ache.flink.table.functions.FunctionContext;' to the code.
 @Override
 public void open(FunctionContext context) {
 //
 }

 public void eval(String str) {
 String[] split = str.split("\\|");
 for (String s : split) {
 collect(s);
 }
 }

 // The close method is optional.
 @Override
 public void close() {
 //
 }
}

Return multiple rows
A UDTF can convert the output result from a single row to multiple rows by calling the
 collect method multiple times.

Return multiple columns
A UDTF can also convert the output result from a single column to multiple columns. If you
want a UDTF to return multiple columns, declare the return value as a tuple or row. The
following examples show how to declare a return value as a tuple and how to declare a return
value as a row.

Declare the return value as a tuple.
Realtime Compute for Apache Flink supports Tuple1 to Tuple25, which define 1 to 25 fields.
The following example is a UDTF that uses Tuple3 to return three fields:

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 449

import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.table.functions.TableFunction;

// If the return value is declared as a tuple, you must explicitly declare the generi
c types of the tuple, such as STRING, LONG, and INTEGER in this example.
public class ParseUdtf extends TableFunction<Tuple3<String, Long, Integer>> {

public void eval(String str) {
String[] split = str.split(",");
// The following code is used for reference only. In actual scenarios, you must add c
ode that implements verification logic.
String first = split[0];
long second = Long.parseLong(split[1]);
int third = Integer.parseInt(split[2]);
Tuple3<String, Long, Integer> tuple3 = Tuple3.of(first, second, third);
collect(tuple3);
}
}

Note
If the return value is declared as a tuple, column values cannot be null and a maximum
of 25 columns are allowed.

Declare the return value as a row.
For example, you can enable this feature to return three columns. The sample code is an
example.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

450 > Document Version: 20231114

import org.apache.flink.table.types.DataType;
import org.apache.flink.table.types.DataTypes;
import org.apache.flink.table.functions.TableFunction;
import org.apache.flink.types.Row;

public class ParseUdtf extends TableFunction<Row> {

public void eval(String str) {
String[] split = str.split(",");
String first = split[0];
long second = Long.parseLong(split[1]);
int third = Integer.parseInt(split[2]);
Row row = new Row(3);
row.setField(0, first);
row.setField(1, second);
row.setField(2, third);
collect(row);
}

@Override
// If the return value is declared as a row, you must overload the getResultType meth
od to explicitly declare the data type of the return value.
public DataType getResultType(Object[] arguments, Class[] argTypes) {
return DataTypes.createRowType(DataTypes.STRING, DataTypes.LONG, DataTypes.INT);
}
}

Note
If the return value is declared as a row, the field value can be null. However, you must
overload the getResultType method.

SQL syntax
A UDTF supports CROSS JOIN and LEFT JOIN. When you use a UDTF, you must add the
keywords LATERAL and TABLE . You must also specify an alias for the UDTF, such as
 ParseUdtf in the preceding code.

CREATE FUNCTION parseUdtf AS 'com.alibaba.blink.sql.udtf.ParseUdtf';

cross join
Each row in the left table is joined with a row of data that is generated by the UDTF. If the
UDTF does not generate any data for a row, the row is not returned.

select S.id, S.content, T.a, T.b, T.c
from input_stream as S,
lateral table(parseUdtf(content)) as T(a, b, c);

left join
Each row in the left table is joined with a row of data that is generated by the UDTF. If the
UDTF does not generate any data for a row, the UDTF fields in the row are filled with null.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 451

Note
A LEFT JOIN statement that uses a UDTF must end with on true .

select S.id, S.content, T.a, T.b, T.c
from input_stream as S
left join lateral table(parseUdtf(content)) as T(a, b, c) on true;

Register and use resources
1. Log on to the Realtime Compute development platform.
2. In the top navigation bar, click Development.
3. In the left-side navigation pane, click the Resources tab.
4. In the upper-right corner of the Resources pane, click Create Resource.
5. In the Upload Resource dialog box, configure resource parameters.

Parameter Description

Location

You can upload JAR packages only from your on-premises
machine in the Realtime Compute for Apache Flink console.

Note
The maximum size of a JAR package that can be uploaded
from your on-premises machine is 300 MB. If the JAR
package exceeds 300 MB, you must upload it to the Object
Storage Service (OSS) bucket that is bound to your cluster or
use an API to upload it.

Resource Click Upload Resource to select the resource that you want to
reference.

Resource Name Enter a name for the resource.

Resource Description Enter a resource description.

Resource Type Select the type of the resource. Valid values: JAR, DICTIONARY,
and PYTHON.

6. In the Resources pane, find the new resource, and move the pointer over More in the
Actions column.

7. In the drop-down list, select Reference.
8. In the code editor, declare the UDX at the beginning. The following statement is an

example:

CREATE FUNCTION stringLengthUdf AS 'com.hjc.test.blink.sql.udx.StringLengthUdf';

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

452 > Document Version: 20231114

https://stream-ap-southeast-3.console.aliyun.com

Publish and use a UDTF
For more information about how to publish and use a UDTF, see Publish a job and Start a job.

Example
-- UDTF str.split("\\|");
create function splitUdtf as 'com.hjc.test.blink.sql.udx.SplitUdtf';

create table sls_stream(
a INT,
b BIGINT,
c VARCHAR
) with (
type='sls',
endPoint='yourEndpoint',
accessKeyId='yourAccessKeyId',
accessKeySecret='yourAccessSecret',
startTime = '2017-07-04 00:00:00',
project='yourProjectName',
logStore='yourLogStoreName',
consumerGroup='consumerGroupTest2'
);

-- Use the splitUdtf function to extract data from the c field. Table T(s) with multipl
e rows and one column is returned. s is the name of the column.
create view v1 as
select a,b,c,s
from sls_stream,
lateral table(splitUdtf(c)) as T(s);

create table rds_output(
id INT,
len BIGINT,
content VARCHAR
) with (
type='rds',
url='yourDatabaseURL',
tableName='yourDatabaseTableName',
userName='yourDatabaseUserName',
password='yourDatabasePassword'
);

insert into rds_output
select
a,b,s
from v1;

This topic describes how to develop a user-defined extension (UDX) in Realtime Compute for
Apache Flink by using IntelliJ IDEA. The development process includes building a development
environment and referencing a UDX in a Realtime Compute for Apache Flink job.

5.11.5. Develop a UDX by using IntelliJ IDEA

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 453

Background information

Important
Only Realtime Compute for Apache Flink in exclusive mode supports UDXs.
We recommend that you use IntelliJ IDEA to develop a UDX.

Configure Maven
1. Download a Maven installation package.

i. Go to the download page at the Apache Maven official website.
ii. Download apache-maven-3.5.3-bin.tar.gz.
iii. Decompress the downloaded package to a specified directory, such as

/Users/<userName>/Documents/maven.
2. Configure environment variables.

i. In the command terminal, run the vim ~/.bash_profile command.
ii. Add the following commands to the .bash_profile file:

export M2_HOME=/Users/<userName>/Documents/maven/apache-maven-3.5.3
export PATH=$PATH:$M2_HOME/bin

iii. Save and close the .bash_profile file.
iv. Run the source ~/.bash_profile command for the configuration to take effect.

3. Run the mvn -v command to check whether the configuration takes effect.
If information similar to the following information is displayed, the configuration takes
effect:

Apache Maven 3.5.0 (ff8f5e7444045639af65f6095c62210b5713f426; 2017-04-
04T03:39:06+08:00)
Maven home: /Users/<userName>/Documents/maven/apache-maven-3.5.0
Java version: 1.8.0_121, vendor: Oracle Corporation
Java home: /Library/Java/JavaVirtualMachines/jdk1.8.0_121.jdk/Contents/Home/jre
Default locale: zh_CN, platform encoding: UTF-8
OS name: "mac os x", version: "10.12.6", arch: "x86_64", family: "mac"

Build a development environment
1. Download the UDX demo.
2. Decompress the downloaded package in a Linux operating system.

tar xzvf RealtimeCompute-udxDemo.gz

3. Open IntelliJ IDEA and click Open to open the demo.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

454 > Document Version: 20231114

https://www.jetbrains.com/idea/download/#section=mac
http://maven.apache.org/download.cgi

Reference a JAR package in a job
1. Create a package.

i. Right-click java and choose New > Package.

ii. In the New Package dialog box, enter a package name. In this example, a package
named com.hjc.test.blink.sql.udx is created.

iii. Click OK.
2. Create a class.

i. Right-click com.hjc.test.blink.sql.udx and choose New > Java Class.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 455

ii. In the Create New Class dialog box, enter a class name.

Note Retain the default value Class of Kind.

iii. Click OK.
3. Enter the following code in the class:

package com.hjc.test.blink.sql.udx;

import org.apache.flink.table.functions.FunctionContext;
import org.apache.flink.table.functions.ScalarFunction;

public class StringLengthUdf extends ScalarFunction {
 // The open method is optional.
 // To write the open method, you must add 'import
org.apache.flink.table.functions.FunctionContext;' to the code.
 @Override
 public void open(FunctionContext context) {
 }
 public long eval(String a) {
 return a == null ? 0 : a.length();
 }
 public long eval(String b, String c) {
 return eval(b) + eval(c);
 }
 // The close method is optional.
 @Override
 public void close() {
 }
}

4. In the command terminal, run the mvn package or mvn assembly:assembly command to
add the project to the JAR package.

Note
If you need to add a third-party dependency to the JAR package, run the mvn
assembly:assembly command.
The compiled JAR package is RealtimeCompute-
udxDemo/target/RTCompute-udx-1.0-SNAPSHOT.jar or
RealtimeCompute-udxDemo/target/RTCompute-udx-1.0-SNAPSHOT-jar-
with-dependencies.jar. It contains a third-party dependency.

5. Reference the JAR package in a Realtime Compute for Apache Flnik job.
i. Log on to the Realtime Compute development platform.
ii. In the top navigation bar, click Development.
iii. In the left-side navigation pane, click the Resources tab.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref
erence

Blink

456 > Document Version: 20231114

https://stream-ap-southeast-3.console.aliyun.com

iv. In the upper-right corner of the Resources pane, click Create Resource.

Parameter Description

Location

You can upload JAR packages only from your on-premises
machine in the Realtime Compute for Apache Flink console.

Note The maximum size of a JAR package that can
be uploaded from your on-premises machine is 300 MB. If
the JAR package exceeds 300 MB, you must upload it to the
Object Storage Service (OSS) bucket that is bound to your
cluster or use an API to upload it.

Resource Click Upload Resource to select the resource that you want to
reference.

Resource Name Enter a name for the resource.

Resource Description Enter a resource description.

Resource Type Select the type of the resource. Valid values: JAR, DICTIONARY,
and PYTHON.

v. In the Resources pane, find the new resource, and move the pointer over More in the
Actions column.

vi. In the drop-down list, select Reference.
vii. In the code editor, declare the UDX at the beginning. The following code is an example:

CREATE FUNCTION stringLengthUdf AS 'com.hjc.test.blink.sql.udx.StringLengthUdf';

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL ref

erence

> Document Version: 20231114 457

The Realtime Compute for Apache Flink development platform provides multiple features for
Realtime Compute Flink SQL jobs, including data storage management, job development, job
debugging, job administration, monitoring and alerting, and job optimization.
Flink SQL Developer Guide consists of the following topics:

Data storage
You can manage upstream and downstream data storage systems, such as ApsaraDB RDS,
DataHub, and Tablestore, for jobs on the Realtime Compute for Apache Flink development
platform. After you register resources from these systems with Realtime Compute for
Apache Flink, you can preview or sample their related data, or obtain the data definition
language (DDL) statements that are automatically generated to reference these resources.
For more information about data storage, see Overview.

Note For more information about how to add the IP addresses of Realtime
Compute for Apache Flink to a whitelist of an upstream or downstream storage system,
see Configure a whitelist for accessing storage resources.

Job development
This topic describes how to develop, publish, and start a Flink SQL job. For more
information, see Develop a job, Publish a job, and Start a job.
Job debugging
This topic describes how to debug Flink SQL jobs. Online debugging and local debugging
are supported. For more information, see Online debugging.
Job administration
This topic describes how to view the administration information of a Realtime Compute for
Apache Flink job, such as the running information, curve charts, and failover. For more
information, see Overview, Metrics, and Failover.
Monitoring and alerting
This topic describes how to create and activate alert rules. For more information, see
Monitoring and alerting.
Job optimization
This topic describes how to optimize Flink SQL jobs, such as skills for optimizing Flink SQL
code, automatic configuration optimization, performance optimization by auto scaling, and
performance optimization by manual configuration. For more information, see
Recommended Flink SQL practices,Performance optimization by using auto scaling, and
Optimize performance by manual configuration.
Flink SQL
This topic describes the syntax of Flink SQL. For more information, see Overview.

6.Blink SQL Development
Guide
6.1. Overview

6.2. Data storage
6.2.1. Overview

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De
velopment Guide

Blink

458 > Document Version: 20231114

Alibaba Cloud Realtime Compute for Apache Flink provides a page to manage various storage
systems, such as ApsaraDB RDS and Tablestore. Realtime Compute for Apache Flink provides
you an end-to-end cloud-based management solution.

Limits
A Realtime Compute for Apache Flink cluster in exclusive mode can access only storage
resources in the same virtual private cloud (VPC), region, and security group as the cluster.

Data storage in Realtime Compute for Apache Flink
In Realtime Compute for Apache Flink, data storage has the following meanings:

It refers to the storage systems or database tables (hereinafter referred to as storage
resources) at the upstream and downstream nodes of Realtime Compute for Apache Flink.
It indicates how to use the data storage feature of Realtime Compute for Apache Flink. This
feature is used to manage the upstream and downstream storage resources.

Note Before you register storage resources with Realtime Compute for Apache
Flink, you must authorize Realtime Compute for Apache Flink to access these resources.
For more information, see Assign a RAM role to an account that uses Realtime Compute
for Apache Flink in exclusive mode.

Realtime Compute for Apache Flink allows you to reference both upstream and downstream
storage resources by using plaintext AccessKey pairs or registering storage resources.

Use a plaintext AccessKey pair
To reference upstream and downstream storage resources by using a plaintext AccessKey
pair, you must configure the accessId and accessKey parameters in the WITH clause of
the related DDL statement. For more information, see Overview. This way, you can authorize
an Alibaba Cloud account and its RAM users to access the resources of the current or another
Alibaba Cloud account. If User A or a RAM user created within the Alibaba Cloud account of
User A wants to use the storage resources of User B, User A can set the AccessKey pair of
User B in the following DDL statement in plaintext mode:

CREATE TABLE in_stream(
 a varchar,
 b varchar,
 c timestamp
) with (
 type='datahub',
 endPoint='http://dh-cn-hangzhou.aliyuncs.com',
 project='<dataHubProjectName>',
 topic='<dataHubTopicName>',
 accessId='<accessIdOfUserB>',
 accessKey='<accessKeyOfUserB>'
);

Register a storage resource
Realtime Compute for Apache Flink allows you to manage and reference both upstream and
downstream storage resources that have been registered with Realtime Compute for Apache
Flink. After storage resources are registered, you can preview or sample the relevant data, or
obtain the DDL statements that are automatically generated to reference the resources. This
helps you manage your cloud storage resources in end-to-end mode.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De

velopment Guide

> Document Version: 20231114 459

Note You can register only storage resources of the current Alibaba Cloud account.
Therefore, User A or a RAM user created within the Alibaba Cloud account of User A can
register only storage resources purchased by User A. If you want to use storage resources
of another Alibaba Cloud account, you must use the plaintext AccessKey pair of the
specified Alibaba Cloud account in the relevant DDL statement.

Register storage resources
To register upstream and downstream storage resources with Realtime Compute for
Apache Flink before you reference them, perform the following steps:
i. Log on to the Realtime Compute development platform.
ii. In the top navigation bar, click Development.
iii. In the left-side navigation pane of the Development page, click Storage.
iv. In the upper-right corner of the Storage tab, click +Registration and Connection.
v. In the Register Data Store and Test Connection dialog box, configure the parameters

for storage resources.
Realtime Compute for Apache Flink allows you to register the following types of storage
resources. For more information about how to register storage resources of a specific
type, click the following links:

Register a Tablestore instance
Register an ApsaraDB for RDS instance
Register a Log Service project

Preview data from a registered storage resource
To preview data from a registered storage resource, perform the following steps:
i. In the left-side navigation pane of the Development page, click Storage.
ii. On the Storage tab, double-click the folder of a registered storage resource and its

subfolder to find the table that you want to view, and double-click the name of the table.
iii. In the Table Details pane, view data of the storage resource in the Data Preview

section.

Obtain the DDL statements that are automatically generated to reference a storage
resource
To obtain the DDL statements that are automatically generated to reference a storage
resource, perform the following steps:
i. In the left-side navigation pane of the Development page, click Storage.
ii. On the Storage tab, double-click the folder of a registered storage resource and its

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De
velopment Guide

Blink

460 > Document Version: 20231114

https://stream-ap-southeast-3.console.aliyun.com

subfolder to find the table that you want to view, and double-click the name of the table.
iii. In the Table Details pane, click Reference as Source Table, Reference as Result

Table, or Reference as Dimension Table. Then, you can obtain the DDL statements
that are automatically generated to reference the table.

Note The automatically generated DDL statements contain only the basic
parameters in the WITH clause to ensure connectivity between Realtime Compute for
Apache Flink and storage resources. You can add other parameters to the WITH clause
in addition to the basic parameters.

Test network connectivity by using the network detection feature

Note The network detection feature is not supported in the China (Hangzhou)
region of Finance Cloud because Cloud Assistant is not installed in the region.

Realtime Compute for Apache Flink provides the network detection feature for data
storage. This feature allows you to test network connectivity between Realtime Compute
for Apache Flink and storage resources. To enable the network detection feature, perform
the following steps:
i. In the left-side navigation pane of the Development page, click Storage.
ii. In the upper-right corner of the Storage tab, click +Registration and Connection.
iii. In the Register Data Store and Test Connection dialog box, turn on Test

Connection.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De

velopment Guide

> Document Version: 20231114 461

This topic describes the parameters that are required to register an AnalyticDB for MySQL
instance.

Important
This topic applies only to AnalyticDB for MySQL V2.0. Realtime Compute for Apache Flink
does not allow you to register AnalyticDB for MySQL V3.0 to store result tables. To use the
result tables of AnalyticDB for MySQL V3.0, you must create and reference the result
tables in plaintext mode. For more information, see Create an AnalyticDB for MySQL V3.0
result table.

Register storage resources

Note
Before you use Realtime Compute for Apache Flink to register storage resources, you
must grant Realtime Compute for Apache Flink the permission to access these resources.
For more information, see Assign a RAM role to an account that uses Realtime Compute
for Apache Flink in exclusive mode.

1. Log on to the Realtime Compute development platform.
2. In the top navigation bar, click Development.
3. In the left-side navigation pane of the Development page, click Storage.
4. In the upper-left corner of the Storage page, click +Registration and Connection.
5. In the Register Data Store and Test Connection dialog box, configure the storage

parameters.
6. Click OK.

Storage parameters

Parameter Description

URL

Enter the VPC URL of the AnalyticDB for MySQL database

To view the URL, perform the following steps:
1. Log on to the AnalyticDB for MySQL console.
2. In the left-side navigation pane, click Clusters. On the Clusters

page, click the ID of the instance to go to the Cluster
Information page.

3. In the Network Information section, view the URL.

6.2.2. Data storage resource registration
6.2.2.1. Register an AnalyticDB for MySQL instance

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De
velopment Guide

Blink

462 > Document Version: 20231114

https://stream-ap-southeast-3.console.aliyun.com
https://ads.console.aliyun.com/?spm=a2c4g.11186623.2.23.2c952b809T8asM

Database The name of the AnalyticDB for MySQL database or the name of the
AnalyticDB for MySQL instance.

AccessKey ID The AccessKey ID of your Alibaba Cloud account.

AccessKey Secret The AccessKey secret of your Alibaba Cloud account.

This topic describes how to use Realtime Compute for Apache Flink to register a Tablestore
instance.

Introduction to Tablestore
Tablestore is a NoSQL database service that is built based on Alibaba Cloud Apsara system.
Tablestore allows you to store and access large amounts of structured data in real time.
Tablestore provides the following benefits: low latency and simple computing. Therefore,
Tablestore is suitable for storing dimension tables and result tables of Realtime Compute for
Apache Flink.

Register storage resources

Note
Before you use Realtime Compute for Apache Flink to register storage resources, you
must grant Realtime Compute for Apache Flink the permission to access these resources.
For more information, see Assign a RAM role to an account that uses Realtime Compute
for Apache Flink in exclusive mode.

1. Log on to the Realtime Compute development platform.
2. In the top navigation bar, click Development.
3. In the left-side navigation pane of the Development page, click Storage.
4. In the upper-left corner of the Storage page, click +Registration and Connection.
5. In the Register Data Store and Test Connection dialog box, configure the storage

parameters.
6. Click OK.

Parameters
Endpoint

The virtual private cloud (VPC) endpoint of the Tablestore instance that you want to
register. You can view this endpoint in the Tablestore console. For more information
about the VPC endpoint, see Endpoints.

6.2.2.2. Register a Tablestore instance

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De

velopment Guide

> Document Version: 20231114 463

https://stream-ap-southeast-3.console.aliyun.com
https://ots.console.aliyun.com
https://www.alibabacloud.com/help/en/tablestore/product-overview/endpoints

To set Accessed By to Any Network, perform the following steps:
a. Log on to the Tablestore console.
b. In the left-side navigation pane, click All Instances. In the Instance Name column of

the All Instances page, click the name of the Tablestore instance that you want to
register.

c. On the Instant Management page, click the Network Management tab. On this tab,
click Change next to Accessed By.

d. In the dialog box that appears, select Any Network from the Accessed By drop-down
list.

e. Click OK.

Instance Name
Enter the name of the Tablestore instance.

This topic describes how to use Realtime Compute for Apache Flink to register an ApsaraDB
for RDS instance.

Introduction to ApsaraDB for RDS
ApsaraDB for RDS is a stable, reliable, and scalable online database service. Based on Apsara
Distributed File System and high-performance storage services, ApsaraDB for RDS supports a
wide range of database engines, such as MySQL, SQL Server, PostgreSQL, and Postgres Plus
Advanced Server (PPAS). ApsaraDB for RDS provides comprehensive solutions for database
operations and maintenance (O&M), such as disaster recovery, data backup, data recovery
and restoration, monitoring, and data migration.

Note
If Realtime Compute for Apache Flink frequently writes data to a table or a
resource file, a deadlock may occur. In scenarios that require highly frequent or
highly concurrent writes, we recommend that you use Tablestore to store result
tables. For more information, see Create a Tablestore result table.
Realtime Compute for Apache Flink does not allow you to register the ApsaraDB for
RDS V8.0 data store in the console to store result tables. To use result tables of
ApsaraDB for RDS V8.0, you must use the plaintext mode to create and reference
the result tables. For more information, see Use a plaintext AccessKey pair.

Register storage resources

Note Before you use Realtime Compute for Apache Flink to register storage
resources, you must grant Realtime Compute for Apache Flink the permission to access
these resources. For more information, see Assign a RAM role to an account that uses
Realtime Compute for Apache Flink in exclusive mode.

1. Log on to the Realtime Compute development platform.
2. In the top navigation bar, click Development.
3. In the left-side navigation pane of the Development page, click Storage.
4. In the upper-left corner of the Storage page, click +Registration and Connection.
5. In the Register Data Store and Test Connection dialog box, configure the storage

parameters.

6.2.2.3. Register an ApsaraDB for RDS instance

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De
velopment Guide

Blink

464 > Document Version: 20231114

https://ots.console.aliyun.com/
https://stream-ap-southeast-3.console.aliyun.com

6. Click OK.

Parameters

Note When you register storage resources in an ApsaraDB for RDS instance, the IP
addresses of Realtime Compute for Apache Flink are automatically added to the whitelist
for accessing the ApsaraDB for RDS instance.

Parameter Description

Storage Type
The type of storage resources that you want to
register. From the Storage Type drop-down list,
select RDS Data Storage.

Region The region where the ApsaraDB for RDS instance
resides.

Instance

The ID of the ApsaraDB for RDS instance that you
want to register.

Note Enter the instance ID instead of
the instance name.

DBName

The name of the ApsaraDB for RDS database.

Note Enter the database name
instead of the instance name.

User Name The username that is used to access the
ApsaraDB for RDS database.

Password The password that is used to access the
ApsaraDB for RDS database.

This topic describes how to use Realtime Compute for Apache Flink to register a Log Service
project. This topic also provides answers to commonly asked questions about the registration
process.

Introduction to Log Service
Log Service is an end-to-end logging service. Log Service allows you to collect, consume, ship,
query, and analyze log data in a quick way. It improves the operations and maintenance
(O&M) efficiency, and provides the capability to process large amounts of data. Log Service is
used to store streaming data. Therefore, Realtime Compute for Apache Flink can use the
streaming data that is stored in Log Service as input data.

Register storage resources

Note
Before you use Realtime Compute for Apache Flink to register storage resources, you
must grant Realtime Compute for Apache Flink the permission to access these resources.
For more information, see Assign a RAM role to an account that uses Realtime Compute
for Apache Flink in exclusive mode.

6.2.2.4. Register a Log Service project

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De

velopment Guide

> Document Version: 20231114 465

1. Log on to the Realtime Compute development platform.
2. In the top navigation bar, click Development.
3. In the left-side navigation pane of the Development page, click Storage.
4. In the upper-left corner of the Storage page, click +Registration and Connection.
5. In the Register Data Store and Test Connection dialog box, configure the storage

parameters.
6. Click OK.

Parameters
Endpoint
The endpoint of the Log Service project that you want to register. The endpoint of a Log
Service project varies based on the region of this project. For more information, see
Endpoints.

Note
The endpoint of a Log Service project must start with http:// and cannot end
with a forward slash (/). For example, the endpoint can be http://cn-
hangzhou-intranet.log.aliyuncs.com .
Realtime Compute for Apache Flink and Log Service are deployed in the internal
network of Alibaba Cloud. We recommend that you enter the endpoint of the
classic network or the virtual private cloud (VPC) for the project. We recommend
that you do not enter the public endpoint. If Realtime Compute for Apache Flink
accesses a Log Service project over the Internet by using the public endpoint, the
system may consume the resources of Internet bandwidth. In this case, the
system performance may be compromised.

Project
The name of the Log Service project that you want to register.

Note
In Realtime Compute for Apache Flink, you can register only the Log Service projects
that are owned by the current Alibaba Cloud account. Assume that User A owns Project
A of Log Service. If User B needs to use the storage resources of Project A in Realtime
Compute for Apache Flink, this system does not allow User B to register Project A. If you
need to use the Log Service project that is owned by another Alibaba Cloud account,
you can use the plaintext mode to use the project. For more information, see Use a
plaintext AccessKey pair.

FAQ
What do I do if I fail to register a storage resource in Realtime Compute for Apache Flink?
Realtime Compute for Apache Flink uses a storage software development kit (SDK) to access
different data storage systems. The Storage tab on the Realtime Compute for Apache Flink
development platform helps you manage data from different data storage systems. If you fail
to register a storage resource in Realtime Compute for Apache Flink, troubleshoot the issue
by performing the following steps:

Check whether the Log Service project is created in your Alibaba Cloud account. Log on to
the Log Service console and check whether you can access the project.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De
velopment Guide

Blink

466 > Document Version: 20231114

https://stream-ap-southeast-3.console.aliyun.com
https://www.alibabacloud.com/help/en/sls/developer-reference/endpoints
https://sls.console.aliyun.com/

Check whether the Log Service project is owned by your Alibaba Cloud account. You cannot
register a project that is owned by another Alibaba Cloud account.
Check whether the endpoint and the name of the Log Service project are valid. The
endpoint of the Log Service project must start with http:// and cannot end with a
forward slash (/).
Check whether the endpoint of the Log Service project is the classic network endpoint.
Realtime Compute for Apache Flink does not support VPC endpoints.
Check whether you have already registered the Log Service project. Realtime Compute for
Apache Flink provides a registration check mechanism to prevent duplicate registrations.

Why does Realtime Compute for Apache Flink support only time-based data sampling?
Log Service stores streaming data and supports only time-based data sampling. You can
specify only time parameters in the Log Service API. Therefore, Realtime Compute for Apache
Flink supports only time-based data sampling.

By default, a newly created database instance does not allow access from IP addresses that
are not included in its whitelists. To allow Realtime Compute for Apache Flink to access the
database instance, you must add the IP addresses of Realtime Compute for Apache Flink to a
whitelist of the database instance. This topic describes how to add the IP addresses of
Realtime Compute for Apache Flink to a whitelist of an ApsaraDB for RDS instance.

IP addresses to be added to the whitelist
To access storage resources from a Realtime Compute for Apache Flink cluster in exclusive
mode, you only need to add the IP addresses of the ENI to the whitelist. To view the IP
addresses of the ENI, perform the following steps:

1. Log on to the .
2. Move the pointer over the username in the upper-right corner.
3. In the drop-down list, click Project Management.
4. In the left-side navigation pane, click Clusters.
5. On the Clusters page, click the name of the target cluster.
6. In the cluster information dialog box, view the ENI of the cluster.

Configure a whitelist for an ApsaraDB for RDS instance
When you reference an ApsaraDB for RDS database in Realtime Compute for Apache Flink,
Realtime Compute for Apache Flink needs to frequently read and write data in the ApsaraDB
for RDS database. In this case, you must add the IP addresses of Realtime Compute for
Apache Flink to a whitelist of the ApsaraDB for RDS instance. For more information, see
Configure an IP address whitelist for an ApsaraDB RDS for MySQL instance.

This topic describes how to create a Realtime Compute for Apache Flink job. This topic also
describes the features provided on the Development page, such as syntax check, Flink SQL
code assistance, and management of Flink SQL code versions.

6.2.3. Configure a whitelist for accessing
storage resources

6.3. Job development
6.3.1. Develop a job

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De

velopment Guide

> Document Version: 20231114 467

https://www.alibabacloud.com/help/en/rds/apsaradb-rds-for-mysql/configure-an-ip-address-whitelist-for-an-apsaradb-rds-for-mysql-instance

Background information

Note

Write the Flink SQL code of a job
1. Log on to the Realtime Compute development platform.
2. In the top navigation bar, click Development.
3. At the top of the Development page, click Create File
4. In the Create File dialog box, specify the parameters. The following table describes these

parameters.

Parameter Description

File Name

The name of the file that contains the Fink SQL code.

Note
The file name must be unique in the existing project.

File Type Valid values are FLINK_STREAM/DATASTREAM and
FLINK_STREAM/SQL.

Storage Path

The folder of the file that contains the Fink SQL code. On the right

side of the existing folder, you can also click the icon to

create a subfolder.

5. Click OK.
6. On the page that appears, write the Flink SQL code for the job.

Note
On the right side of the Development page, you can click Code Structure to
check the Flink SQL code structure.
On the left side of the Development page, we recommend you click Storage to
manage upstream and downstream storage resources. For more information, see
Overview.

Specify job parameters
1. Log on to the Realtime Compute development platform.
2. In the top navigation bar, click Development.
3. In the left-side navigation pane of the Development page, click the job name.
4. On the right side of the Development page for the job, click Parameters.
5. Specify the parameters required for the job.

For more information about job parameters, see Job parameters.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De
velopment Guide

Blink

468 > Document Version: 20231114

https://stream-ap-southeast-3.console.aliyun.com
https://stream-ap-southeast-3.console.aliyun.com

Specify project parameters
The job parameters are valid for a single job. The project parameters are valid for all the jobs
in the project. After the project parameters are configured, the following two operations are
performed:

Replacing variables: After you click Start, Debug, or Syntax Check, the system replaces the
variables in SQL jobs or in the code of the jobs that are created by using the Flink
DataStream API.
Distributing parameters: The project-level system parameters are merged with job
parameters and startup parameters. The startup parameters can be configured for only
batch jobs. The following parameters are sorted in descending order based on their
priorities: startup parameters > job parameters > project-level system parameters. The
merged parameters are used as final parameters and are distributed to the Blink job. For
example, if job parameters and project parameters conflict, the job parameters prevail.

1. Log on to the Realtime Compute development platform.
2. In the top navigation bar, move the pointer over your profile picture. In the list that

appears, click Project Management.
3. In the Project Name column of the Projects page, click the name of the project for which

you want to configure parameters.
4. In the top navigation bar, click Development.
5. On the left side of the Development page, click the job for which you want to configure the

parameters.
6. Enable project parameter configuration.

By default, disable.project.config=false is specified. This indicates that you cannot
configure project parameters. You can enable project parameter configuration by using the
following methods:

SQL jobs: On the right side of the Development page, click Parameters and specify the
following setting: enable.project.config=true .
Flink DataStream job: In the job code, specify enable.project.config=true parameter .

7. At the top of the Development page, click Project Parameter.
8. Configure the project parameters

Project parameters support only two job types: SQL jobs and Flink DataStream jobs. When
you configure project system parameters, you must add the job type to the beginning of the
project parameters. For example, you can use sql.name=LiLei or
 datastream.name=HanMeimei .

Enable syntax check
1. Log on to the Realtime Compute development platform.
2. In the top navigation bar, click Development.
3. On the left side of the Development page, click the job for which you want to check

syntax.
4. At the top of the Development page, click Syntax Check.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De

velopment Guide

> Document Version: 20231114 469

https://stream-ap-southeast-3.console.aliyun.com
https://stream-ap-southeast-3.console.aliyun.com

Note
When you save a Flink SQL job, the system automatically checks the syntax of
this job.
Syntax Check takes effect for only Flink SQL statements that have complete
logic. Otherwise, Syntax Check does not take effect.

Flink SQL code assistance
Syntax check
After you modify the Flink SQL code, the system automatically saves the code and checks
the syntax. If a syntax error is detected, the system displays the cause of the error, the row
and column where the error occurred on the Development page.
Intelligent code completion
When you enter Flink SQL statements on the Development page, the system
automatically performs intelligent code completion, including keywords, built-in functions,
tables, and fields.
Syntax highlighting
The system highlights keywords in Flink SQL statements and displays different structures in
different colors.

Management of Flink SQL code versions
Realtime Compute for Apache Flink allows you to manage Flink SQL code versions. A new
code version is generated each time you publish a job. You can use code versions to track
versions, modify the code, and roll the code back to an earlier version.

1. Log on to the Realtime Compute development platform.
2. In the top navigation bar, click Development.
3. On the left side of the Development page, click the job for which you want to manage the

code version.
4. On the right side of the Development page, click Versions.
5. In the Versions pane, find the code version of the job and choose Actions > More.
6. Select one of the following options from the drop-down list:

Compare: checks the difference between the current version and an earlier version.
Rollback: rolls the code back to an earlier version.
Delete: deletes a code version. By default, you can reserve a maximum of 20 Flink SQL
code versions in Realtime Compute for Apache Flink. If the number of code versions is
less than 20, you can publish a job. If the number of code versions is 20, the system does
not allow you to publish a job and prompts you to delete earlier versions.

Note
You can publish a job only if the number of versions is less than 20.

Locked: locks the current version.

Note
You can submit a new version only after you unlock the current version.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De
velopment Guide

Blink

470 > Document Version: 20231114

https://stream-ap-southeast-3.console.aliyun.com

After you develop and debug a job, and pass the syntax check, you can publish the job to the
production environment.

Procedure
1. Configure resources

Specify the resource configuration mode based on your requirements. We recommend that
you use the default configuration if you publish the job for the first time.

Note Realtime Compute for Apache Flink supports manual resource
configuration. For more information, see Optimize performance by manual
configuration.

2. Check data
Check parameter settings and click Next.

3. Publish the job
Click Publish.

After you develop and publish a job, you can start the job on the Administration page.

Procedure
1. Log on to the Realtime Compute development platform.
2. In the top navigation bar, click Administration.
3. In the Actions column of the Administration page, find the job that you want to start and

click Start.
4. In the Start dialog box, configure the Start Time for Reading Data parameter.

5. Click OK. The job is started.
Start Time for Reading Data specifies the time when Realtime for Apache Flink starts to
read data from the source table. The time indicates the time when data is generated.

If you specify the current time, Realtime Compute for Apache Flink reads data that is
generated from the current time.
If you select a previous time point, Realtime Compute for Apache Flink reads data that is
generated from this time point. This is used to trace historical data.

6.3.2. Publish a job

6.3.3. Start a job

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De

velopment Guide

> Document Version: 20231114 471

https://stream-ap-southeast-3.console.aliyun.com

Note After the job is started, you can check the running information on the
Overview tab. For more information, see Overview.

After you modify the resource configuration of a job, you must suspend and resume the job to
make the changes take effect. This topic describes how to suspend a job.

Background information

Important
You can only suspend a job that is in the Running state.
Suspending a job does not clear its task status. For example, if the job you
suspend is running a COUNT operation, the COUNT operation continues from the
last successful checkpoint after you resume the job.
The Suspend (checkpoint) operation is supported in Realtime Compute V3.5.0 and
later. If your Realtime Compute is earlier than V3.5.0, the following error message
is displayed when you try to perform this operation: An error occurred. System
error: The BLINK version is abnormal. Error reason: blink version >=
blink-3.5 is required, instance blink-3.4.4.

Procedure
1. Log on to the Realtime Compute development platform.
2. In the top navigation bar, click Administration.
3. On the Administration page, find the target job, and click Suspend in the Actions

column.

Note The Suspend (checkpoint) operation in More suspends the job and
triggers a checkpoint event. Therefore, the Suspend (checkpoint) operation takes
longer time to suspend a job than the Suspend operation.

After you modify the SQL logic, change the job version, add parameters to the WITH clause, or
add job parameters for a job, you must terminate and then start the job to make the changes
take effect. This topic describes how to terminate a job.

Important
You can only terminate a job that is in the Running or Starting state.
If you terminate a job, its task status is cleared. For example, if the job you
terminate is running a COUNT operation, the COUNT operation starts from 0 after
you start the job.
The Terminate (checkpoint) operation is supported in Realtime Compute for
Apache Flink V3.5.0 and later. If your Realtime Compute for Apache Flink is earlier
than V3.5.0, the following error message is displayed when you try to perform this
operation: An error occurred. System error: The BLINK version is abnormal.
Error reason: blink version >= blink-3.5 is required, instance blink-3.4.4.

To terminate a job, perform the following steps:

6.3.4. Suspend a job

6.3.5. Terminate a job

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De
velopment Guide

Blink

472 > Document Version: 20231114

https://stream-ap-southeast-3.console.aliyun.com

1. Log on to the Realtime Compute development platform.
2. In the top navigation bar, click Administration.
3. On the Administration page, find the job that you want to terminate, and click Terminate

in the Actions column.

Note The Terminate (checkpoint) operation under More is different from the
Terminate operation. The system triggers a checkpoint when you perform the
Terminate (checkpoint) operation to terminate a job. Therefore, the time consumed
to terminate a job by performing the Terminate (checkpoint) operation is longer than
that by performing the Terminate operation. The job status is cleared after the job is
terminated. The Terminate (checkpoint) operation has other functions in some
scenarios. For example, if the upstream storage system is Message Queue for Apache
Kafka, the system submits an offset each time it triggers a checkpoint. This ensures
that the number of offsets submitted to the Kafka server is consistent with the amount
of data consumed.

The Realtime Compute for Apache Flink development platform provides you with a local
debugging environment. You can upload custom data, simulate job running, and check output
in the local debugging environment to make sure that your business logic is valid.

Characteristics
The local debugging environment is completely isolated from the production environment. In
the local debugging environment, all Flink SQL jobs run in an independent debugging
container, and the debugging results are displayed on pages in the debugging environment.
Local debugging does not affect online production streams, Realtime Compute for Apache
Flink jobs, or data storage systems.

Note In local debugging mode, Realtime Compute for Apache Flink cannot detect
running failures caused by incompatible data formats in data storage resources. For
example, Realtime Compute for Apache Flink cannot detect whether the length of output
data exceeds the maximum length specified when you create an ApsaraDB RDS table.

6.4. Job debugging
6.4.1. Perform local debugging

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De

velopment Guide

> Document Version: 20231114 473

https://stream-ap-southeast-3.console.aliyun.com

Procedure

Note Before you debug a job, make sure that you have developed the job. For
more information, see Develop a job.

1. Log on to the Realtime Compute development platform.
2. In the top navigation bar, click Development.
3. On the top of the job edit section, click Debug.

4. In the Debug File dialog box, enter the test data. You can obtain test data by using one of
the following methods:

Upload local data
a. In the data preview section, click Download Template.
b. Edit the debugging data based on the template.

Note The default delimiter for debugging data is a comma (,). For more
information about how to define a delimiter, see Delimiter of the debugging data.

c. In the Upload File section, click Upload to upload the debugging data.
Sample online data

Note Before you use the Sequential Online Data Sampling feature, make
sure that the data source contains data during the sampling.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De
velopment Guide

Blink

474 > Document Version: 20231114

https://stream-ap-southeast-3.console.aliyun.com

a. In the data preview section, click Random Online Data Sampling or Sequential
Online Data Sampling.

b. Enter the sample configuration information.
c. Click OK.

Note After the data is uploaded, you can view it in the data preview section.

5. Click OK.
6. In the lower part of the job edit section, view the debugging results.

Delimiter of the debugging data
By default, the debugging data uses a comma (,) as the delimiter. If the input data, such as a
JSON file, already contains commas (,), you must define another delimiter for the debugging
data, such as a vertical bar (|).

Note Realtime Compute for Apache Flink supports only a single character as a
delimiter, such as a vertical bar (|). You cannot use a string as a delimiter, such as aaa .

To define a delimiter for debugging data, perform the following steps:

Note Before you configure a delimiter, make sure that you have developed a job.
For more information, see Develop a job.

1. On the right side of the job edit section, click Parameters.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De

velopment Guide

> Document Version: 20231114 475

2. In the parameter edit section of the job, enter the configuration of the delimiter. The
following code shows how to configure a vertical bar (|) as the delimiter:

debug.input.delimiter = |

UDX logs
Display user-defined extension (UDX) logs generated during local debugging.
In Java, use the following method to convert the log format so the logs can be parsed by
Realtime Compute for Apache Flink and display the UDX logs generated during local
debugging:

public static void debugMsgOutput(String msg) {
 System.out.println(
 String.format("{\"type\":\"log\",\"level\": \"INFO\", \"time\": \"%s\",
\"message\": \"%s\", \"throwable\": \"null\"}\n",new SimpleDateFormat("yyyy-MM-dd HH:
mm:ss").format(new Date()), msg));
}

View UDX logs.
After the debugging is completed, you can view the UDX logs on the Completed tab at the
lower part of the job edit section.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De
velopment Guide

Blink

476 > Document Version: 20231114

Note You can press Ctrl+F to search for the logs.

The Realtime Compute for Apache Flink development platform provides an online debugging
environment for you to debug your Realtime Compute for Apache Flink jobs. Compared with
local debugging, online debugging consumes more compute units but validates business
logic more accurately.
Online debugging uses real data storage resources to reduce the output differences between
debugging and production. This helps you identify issues in the debugging phase.

Procedure
1. Develop a job. For more information, see Develop a job.
2. Modify the type parameter in the data definition language (DDL) statements of data

storage resources.
Source table: type = 'random'
Result table: type = 'print'

3. Publish the job. For more information, see Publish a job.
4. Start the job. For more information, see Start a job.

Connectors
The Realtime Compute for Apache Flink development platform provides the following two
types of connectors for online debugging:

Source table random : periodically generates random data of a specific type.
Result table print : generates computing results.

Parameters in a connector table
random table

Parameter Description

type Required. The type of the connector. The value
can only be random.

interval
Optional. The time interval at which data is
generated. Unit: milliseconds. Default value:
500.

print table

6.4.2. Online debugging

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De

velopment Guide

> Document Version: 20231114 477

Parameter Description

type Required. The type of the connector. The value
can only be print.

ignoreWrite

Optional. Specifies whether to ignore write
operations. Default value: false. Valid values:

false: Data is written to the result table, and
logs are generated.
true: Data is not written to the result table.
The result table is empty, and no logs are
generated.

Examples
Test code

CREATE TABLE random_source (
 instr VARCHAR
) WITH (
 type = 'random'
);

CREATE TABLE print_sink(
 instr VARCHAR,
 substr VARCHAR,
 num INT
)with(
 type = 'print'
);

INSERT INTO print_sink
SELECT
 instr,
 SUBSTRING(instr,0,5) AS substr,
 CHAR_LENGTH(instr) AS num
FROM random_source

Test results

Query online debugging results

Note Before you query the results of online debugging, make sure that you have
published and started the job. For more information, see Publish a job and Start a job.

To query the results of online debugging, follow these steps:
1. Log on to the Realtime Compute development platform.
2. In the top navigation bar, click Administration to go to the Administration page.
3. In the Job Name column, click the name of the job to go to the Job Administration page.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De
velopment Guide

Blink

478 > Document Version: 20231114

https://stream-ap-southeast-3.console.aliyun.com

4. In the Vertex Topology section, click the required result table node.
5. On the top of the Execution Vertex page, navigate to Subtask List > View Logs to go to

the View Logs page.
6. View the logs.

Output of the print result table
Click View Logs in the Actions column of taskmanager.out.
Output of UDX logs
If you use user defined extensions (UDXs), you can view the logs by using the following
methods. For more information about how to use UDXs, see Overview.

system.out or system.err method
Click View Logs in the Actions column of taskmanager.out or taskmanager.err .
SLF4J Logger method
Click View Logs in the Actions column of taskmanager.log .

On the Job Administration page, you can view information about a job, such as the running
information, curve charts, failover information, and properties and parameters. This
topic describes how to go to the Job Administration page.

1. Log on to the Realtime Compute Console.
2. In the top navigation bar, click Administration.
3. In the Jobs section, click the target job name under the Job Name field.

The Overview page displays the real-time running information about a job. You can analyze
and determine whether a job is healthy and meets your expectations based on the job status.

Go to the Overview page
1. Go to the Administration page in Realtime Compute for Apache Flink.

i. Log on to the Realtime Compute development platform.
ii. In the top navigation bar, click Administration.
iii. On the Jobs page that appears, click the target job name under the Job Name field.

2. At the top of the Job Administration page, click Overview.

Task status
The Task Status section displays the number of tasks in each state. A task can be in one of
the following states:

Created
Running
Failed
Completed
Scheduling
Canceling

6.5. Job administration
6.5.1. Go to the Job Administration page

6.5.2. Overview

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De

velopment Guide

> Document Version: 20231114 479

https://stream-ap-southeast-3.console.aliyun.com
https://stream-ap-southeast-3.console.aliyun.com

Canceled

Job instantaneous values
Below the Task Status section, you can view the instantaneous values of a job.

Parameter Description

Input TPS
The number of blocks that are read from the source table per second. For
Log Service, you can package multiple data records into one log group for
reading. In this case, the value indicates the number of log groups that are
read from the source table per second.

Input RPS The number of data records that are read from the source table per second.

Output RPS The number of data records that are written to the result table per second.

Input BPS The number of blocks that are read from the source table per second. Unit:
bytes/s.

Consumed CUs The current compute units (CUs) used by the job.

Start Time The start time of the job.

Runtime The duration for which the job has been running.

Vertex topology
The Vertex Topology section displays the execution graph of the underlying computing
logic of Realtime Compute for Apache Flink. Each component represents a task. Each data
stream flows from one or more data source tables to one or more data result tables. The data
flow resembles an arbitrary directed acyclic graph (DAG). To execute a job more efficiently,
the underlying logic of Realtime Compute for Apache Flink chains subtasks to form an
operator and chains operators to form a task. Each task is executed in a thread. This feature
reduces thread switching, message serialization or deserialization, data swapping in the
buffer, and data latency. However, this feature increases the overall throughput. An operator
indicates the computational logic. A task is a collection of multiple operators.

Display mode
By default, the Vertex Topology section displays the topology. In the upper-right corner of
the Vertex Topology section, you can click List Mode to change the display mode.
Task status information

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De
velopment Guide

Blink

480 > Document Version: 20231114

Task parameters in view mode

In view mode, the information about the task is displayed in the related box. The
following table describes the parameters.

Parameter Description

Resource Health
Score

The resource health score is obtained based on the specified check
mechanism. The value indicates the job performance. If the resource
health score is less than 60, data is stacked up for the task. This results
in poor data processing performance.

Note If the data processing performance is poor, we
recommend that you optimize the performance by manual
configuration. For more information, see Optimize performance by
manual configuration.

PARALLEL The parallelism for the task.

TPS The number of blocks that are read from the source table per second.

DELAY The processing delay of the task.

IN_Q The percentage of the input queues for the task.

OUT_Q The percentage of the output queues for the task.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De

velopment Guide

> Document Version: 20231114 481

Task parameters in list mode
At the bottom of the Vertex Topology section, you can view the information about the
task in list mode. The following table describes the parameters of the task.

Parameter Description

Name The name of the task.

Status The status of the task.

In Queue The percentage of the input queues for the task.

Out Queue The percentage of the output queues for the task.

Delay(ms) The processing delay of the task.

TPS The amount of data that is read from input nodes per second.

Bytes Received The amount of data that is received by the task.

Records Received The number of data records that are received by the task.

Bytes Sent The amount of data that is sent from the task.

Records Sent The number of data records that are sent from the task.

Task The status of each parallelism for the task.

Task thread information
Click the task node. On the SubTasks tab, view the thread list of the task.

Vertex information

Note The following features are supported only in Realtime Compute for Apache
Flink V3.0.0 and later.

Display Vertex operator information
In the Vertex Topology section, click the plus sign (+) in the upper-right corner of a Vertex
box to display the Vertex operator information.
Display Vertex details
In the upper-right corner of the Vertex Topology section, click Expand All to display Vertex
details.
Display the Vertex details page
In the Vertex Topology section, click the Vertex border or the name in the Vertex list to
display the Vertex details page on the right. On the Vertex details page, click the
SubTasks tab. On the page that appears, click ID to go to the TaskManager page of the
related log. For example, below the ID column, click LOG 0.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De
velopment Guide

Blink

482 > Document Version: 20231114

Realtime Compute for Apache Flink shows core metrics of your job on the Curve Charts tab to
help you diagnose the status of the job.
The following figure shows the curve chart of a metric.

Note
The metrics are displayed only when a Realtime Compute for Apache Flink job is in
the running state. If the job is in the suspended or terminated state, the metrics
of this job are not displayed.
The metrics are collected and displayed on the Curve Charts tab after the job is
running for more than one minute. This causes the latency in the data that is
displayed in the curve charts.

Go to the Curve Charts tab
1. Go to the Job Administration page in the Realtime Compute for Apache Flink console.

6.5.3. Metrics

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De

velopment Guide

> Document Version: 20231114 483

i. Log on to the Realtime Compute development platform.
ii. In the top navigation bar, click Administration.
iii. On the Jobs page that appears, click the target job name under the Job Name field.

2. In the upper part of the Job Administration page, click the Curve Charts tab.

Overview
Failover
The failover curve chart displays the frequency of failovers that are caused by errors or
exceptions for the current job. To calculate the failover rate, divide the total number of
failovers that occurred within the minute that precedes the current failover time by 60. For
example, if a failover occurred once within the last minute, the failover rate is 0.01667. The
failover rate is calculated by using the following formula: 1/60 = 0.01667.
Delay
To help you obtain the full-link timeliness and job performance, Realtime Compute for
Apache Flink provides the following latency metrics:

Processing Delay: Processing delay = Current system time - Event time at which
the system processes the last data record. If no more data enters upstream storage
systems, the processing delay gradually increases as the system time continues to move
forward.
Data Pending Time : Data pending time = Time when data enters Realtime
Compute for Apache Flink - Event time. Even if no more data enters upstream
storage systems, the queued time does not increase. The queued time is used to assess
whether the Realtime Compute for Apache Flink job has backpressure.
Data Arrival Interval: Data arrival interval = Processing delay - Data pending
time. If the Realtime Compute for Apache Flink job has no backpressure, the queued time
is short and stable. In this case, this metric reflects the degree of data sparsity between
the data sources. If the Realtime Compute for Apache Flink job has backpressure, the
queued time is long or unstable. In this case, this metric cannot be used for reference.

Note
Realtime Compute for Apache Flink uses a distributed computing framework. The
preceding three latency metrics obtain values of each shard or partition of the
data source. Then, the metrics report the maximum values among all the shards
or all the partitions to the development platform of Realtime Compute for Apache
Flink. Therefore, the aggregated data arrival interval that is displayed on the
development platform is different from the interval that is obtained by using the
following formula: Data arrival interval = Processing delay - Data pending
time.
If no more data enters a shard or a partition of the data source, the processing
delay gradually increases.

Input TPS of Each Source
This chart displays statistics on all streaming data input of a Realtime Compute for Apache
Flink job. The chart records the number of blocks that are read from the source table per
second. This helps you obtain the transactions per second (TPS) of a data storage system.
Different from TPS, the records per second (RPS) metric indicates the number of records
read from the source table per second. These records are resolved from the blocks. For
example, if Log Service reads five log groups per second, the value of TPS is 5. If eight log
records are resolved from each log group, a total of 40 log records are resolved. In this
case, the value of RPS is 40.
Data Output of Each Sink

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De
velopment Guide

Blink

484 > Document Version: 20231114

https://stream-ap-southeast-3.console.aliyun.com

This chart displays statistics on all output data of a Realtime Compute for Apache Flink job.
This helps you obtain the RPS of a data storage system. In most cases, if no data output is
detected during system operations and maintenance (O&M), you must check the input of
the upstream storage system and the output of the downstream storage system.
Input RPS of Each Source
This chart displays statistics on all input streaming data of a Realtime Compute for Apache
Flink job. This helps you obtain the RPS of a data storage system. If no data output is
detected during system O&M, you must check the RPS to determine whether the input data
from the upstream storage system is normal.
Input BPS of Each Source
This chart displays statistics on all input streaming data of a Realtime Compute for Apache
Flink job. This chart records the traffic that is used to read the input source table per
second. This helps you obtain the bytes per second (BPS) of the traffic.
Dirty Data from Each Source
This chart displays the number of dirty data records in the data source of a Realtime
Compute for Apache Flink job in different time periods.
Auto Scaling Successes and Failures
This chart displays the number of auto scaling successes and the number of auto scaling
failures.

Important This curve chart is suitable only for Realtime Compute for Apache
Flink whose version is later than V3.0.0.

CPUs Consumed By Auto Scaling
This chart displays the number of CPUs consumed when auto scaling is performed.

Important This curve chart is suitable only for Realtime Compute for Apache
Flink whose version is later than V3.0.0.

Memory Consumed by Auto Scaling
This chart displays the memory space consumed when auto scaling is performed.

Important This curve chart is suitable only for Realtime Compute for Apache
Flink whose version is later than V3.0.0.

Advanced View
Alibaba Cloud Realtime Compute for Apache Flink provides a fault tolerance mechanism that
allows you to restore data streams and ensures that the data streams are consistent with the
application. The fault tolerance mechanism is used to create consistent snapshots of
distributed data streams and the related states. These snapshots work as consistency
checkpoints to which the system can fall back if a failure occurs.
One of the core concepts for distributed snapshots is barriers. Barriers are inserted into data
streams and flow together with the data streams to the downstream. Barriers do not overtake
data records. The records flow strictly in line. A barrier divides a data stream into two parts.
One part enters the current snapshot and the other part enters the next snapshot. Each
barrier has a snapshot ID. If the data flows before a barrier is inserted in the data stream, the
data is included in the specified snapshot. Barriers are lightweight. Barriers do not interfere
with the processing of data streams. Multiple barriers from different snapshots can co-exist in
the same data stream. This allows multiple snapshots to be concurrently created.
Barriers are inserted into data streams at the data source. If a barrier from Snapshot n is
inserted, the system automatically records the checkpoint of Snapshot n in the data stream.
This checkpoint is indicated by Sn. Then, the barrier continues to flow to the downstream.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De

velopment Guide

> Document Version: 20231114 485

When an intermediate operator receives barriers for Snapshot n from all the input streams,
the operator emits only one barrier for Snapshot n to all the output streams. When the sink
operator that is the destination of the directed acyclic graph (DAG) stream receives Barrier n
from each of its input streams, the operator acknowledges to the checkpoint coordinator that
Snapshot n is created. After all the sink operators acknowledge that Snapshot n is created,
this snapshot is considered completed. The following table describes the curve charts of
checkpoint metrics.

Curve chart Description

Checkpoint Duration Displays the time that is consumed to create a checkpoint. Unit:
milliseconds.

Checkpoint Size Displays the memory size that is required to create a checkpoint.

Checkpoint Alignment Time

Displays the duration consumed by all the data streams to flow
from the upstream nodes to the node on which you create a
checkpoint. When the sink operator receives Barrier n from all the
input streams, the operator acknowledges to the checkpoint
coordinator that Snapshot n is created. The sink operator
represents the destination of the DAG stream. After all the sink
operators acknowledge that snapshot n is created, this snapshot is
considered completed. This duration is known as the checkpoint
alignment time.

Checkpoint Count Displays the number of checkpoints within a specific period of time.

Get Displays the longest duration for which a subtask performs a GET
operation on the RocksDB within a specific period of time.

Put Displays the longest duration for which a subtask performs a PUT
operation on the RocksDB within a specific period of time.

Seek Displays the longest duration for which a subtask performs a SEEK
operation on the RocksDB within a specific period of time.

State Size
Displays the state size of the job within a specific period of time. If
the size increases at a high rate, we recommend that you check for
potential issues in the job.

GMS GC Time Displays the duration for which the underlying container of the job
performs garbage collection.

GMS GC Rate Displays the frequency at which the underlying container of the job
performs garbage collection.

Watermark
Curve chart Description

Watermark Delay Displays the difference between the watermark time and the
system time.

Dropped Records per Second
Displays the number of data records that are dropped per second.
If a data record arrives at the window after the watermark time, the
data record is dropped.

Dropped Records
Displays the total number of dropped data records. If a data record
arrives at the window after the watermark time, the data record is
dropped.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De
velopment Guide

Blink

486 > Document Version: 20231114

Delay
Top 15 Source Subtasks with the Longest Processing Delay

This chart displays the processing delay of each source subtask.

Throughput
Curve chart Description

Task Input TPS Displays the data input status of all the tasks in a job.

Task Output TPS Displays the data output status of all the tasks in a job.

Queue
Curve chart Description

Input Queue Usage Displays the data input queue of all the tasks in a job.

Output Queue Usage Displays the data output queue of all the tasks in a job.

Tracing
Curve chart Description

Time Used In Processing Per
Second Displays the duration for which a task processes data per second.

Time Used In Waiting Output
Per Second

Displays the duration for which a task waits for output data per
second.

Task Latency Histogram Mean Displays the latency of each task.

Wait Output Histogram Mean Displays the duration for which each task waits for output.

Wait Input Histogram Mean Displays the duration for which each task waits for input.

Partition Latency Mean Displays the latency of concurrent tasks in each partition.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De

velopment Guide

> Document Version: 20231114 487

Process
Curve chart Description

Process Memory RSS Displays the memory usage of each process.

CPU Usage Displays the CPU utilization of each process.

JVM
Curve chart Description

Memory Heap Used Displays the Java Virtual Machine (JVM) heap memory usage of a
job.

Memory Non-Heap Used Displays the JVM non-heap memory usage of a job.

Thread Count Displays the number of threads in a job.

GC(CMS) Displays the number of times that a job completes garbage
collection (GC).

The Timeline page displays the running status of each Vertex from the start offset to the
current time.

Note This feature is only applicable to Realtime Compute V3.0 or later.

Go to the Timeline page
1. Go to the Job Administration page.

i. Log on to the Realtime Compute Console.
ii. In the top navigation bar, click Administration.
iii. In the Jobs section, click the target job name under the Job Name field.

2. At the top of the Job Administration page, click Timeline.

Alibaba Cloud Realtime Compute provides the Failover page for the current job. On the
Failover page, you can view the running status and error messages of the current job.

Go to the Failover page

6.5.4. Timeline

6.5.5. Failover

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De
velopment Guide

Blink

488 > Document Version: 20231114

https://stream-ap-southeast-3.console.aliyun.com

1. Go to the Job Administration page.
i. Log on to the Realtime Compute Console.
ii. In the top navigation bar, click Administration.
iii. In the Jobs section, click the target job name under the Job Name field.

2. At the top of the Job Administration page, click Failover.

Latest FailOver
The Latest FailOver tab displays the current errors of the job.

Note This feature is only applicable to Realtime Compute V3.0 or earlier.

FailOver History
The FailOver History tab displays the historical errors of the job.

Note This feature is only applicable to Realtime Compute V3.0 or earlier.

Root Exception
The Root Exception tab displays the current exceptions of the job.

Note This feature is only applicable to Realtime Compute V3.0 or later.

Exception History
The Exception History tab displays the historical exceptions of the job.

Note This feature is only applicable to Realtime Compute V3.0 or later.

Alibaba Cloud Realtime Compute provides a fault tolerance that allows you to restore data
streams and make sure that the data streams are consistent with the application. The central
part of the fault tolerance is to create consistent snapshots of distributed data streams and
their states. These snapshots act as consistency checkpoints to which the system can fall
back when a failure occurs.

Go to the Checkpoints page
1. Go to the Job Administration page.

i. Log on to the Realtime Compute Console.
ii. In the top navigation bar, click Administration.
iii. In the Jobs section, click the target job name under the Job Name field.

2. At the top of the Job Administration page, click Checkpoints.

Overview

Note This feature is only applicable to Realtime Compute V3.0 or later.

The Overview tab displays the latest checkpoint information, such as the process, duration,
and state size of the checkpoint at each node.

6.5.6. Checkpoints

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De

velopment Guide

> Document Version: 20231114 489

https://stream-ap-southeast-3.console.aliyun.com
https://stream-ap-southeast-3.console.aliyun.com

History

Note This feature is only applicable to Realtime Compute V3.0 or later.

The History tab displays the recent checkpoint information. Click the plus sign (+) at the
beginning of the row to display the checkpoint information, such as the process, duration, and
state size of the checkpoint at each node.

Summary

Note This feature is only applicable to Realtime Compute V3.0 or later.

The Summary tab displays the average, maximum, and minimum values of completed
checkpoints.

Configuration

Note This feature is only applicable to Realtime Compute V3.0 or later.

The Configuration tab displays the configuration information of the checkpoints.

Completed Checkpoints

Note This feature is only applicable to Realtime Compute V3.0 or earlier.

The Completed Checkpoints tab displays the information about the completed checkpoints.

Parameter Description

ID The ID of the checkpoint.

Start Time The start time of the checkpoint.

Durations (ms) The time spent on creating the checkpoint.

Task Latest Completed Checkpoint

Note This feature is only applicable to Realtime Compute V3.0 or earlier.

The Task Latest Completed Checkpoint tab displays the details about the latest
checkpoint.

Parameter Description

SubTask ID The ID of the subtask.

State Size (Bytes) The state size of the checkpoint.

Durations (ms) The time spent on creating the checkpoint.

6.5.7. JobManager

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De
velopment Guide

Blink

490 > Document Version: 20231114

JobManager plays an important part in the startup process of a Realtime Compute for Apache
Flink cluster. You can view the JobManager parameter information on the JobManager tab.

Go to the JobManager tab
1. Go to the Job Administration page.

i. Log on to the Realtime Compute development platform.
ii. In the top navigation bar, click Administration.
iii. On the Jobs page that appears, click the target job name under the Job Name field.

2. On the Job Administration page, click the JobManager tab.

Role of JobManager in the cluster startup process
JobManager plays an important part in the startup process of a Realtime Compute for Apache
Flink cluster. The following items describe the startup process of a Realtime Compute for
Apache Flink cluster:

1. When a Realtime Compute for Apache Flink cluster is started, one JobManager and several
TaskExecutors are started at the same time.

2. The client submits tasks to the JobManager.
3. The JobManager assigns tasks to TaskExecutors.
4. The TaskExecutors report the heartbeat and statistical information to the JobManager.

JobManager parameters
On the Job Administration page, click the JobManager tab. On the Attempt List tab, click
View Details in the Actions column to view detailed information about the JobManager.

This topic describes the role of TaskExecutors in the startup process of a Realtime Compute
for Apache Flink cluster and explains the TaskExecutor tab.

Important This topic applies to only Realtime Compute for Apache Flink whose
version is earlier than V3.0.

Background information
TaskExecutors are an indispensable part in starting a Realtime Compute for Apache Flink
cluster. TaskExecutors receive tasks from and return execution results to the JobManager.
The number of slots is specified when a TaskExecutor is started. Only one task thread can be
executed in each slot. A TaskExecutor receives tasks from the JobManager, and then builds a
Netty connection with its upstream to receive and process data.

Go to the TaskExecutor tab

6.5.8. TaskExecutor

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De

velopment Guide

> Document Version: 20231114 491

https://stream-ap-southeast-3.console.aliyun.com

1. Log on to the Realtime Compute development platform.
2. In the top navigation bar, click Administration.
3. In the Jobs section, click the name of the required job under the Job Name field.
4. On the Job Administration page, click the TaskExecutor tab.

Role of TaskExecutors in cluster startup
TaskExecutors are an indispensable part in starting a Realtime Compute for Apache Flink
cluster. The following items describe the startup process of a Realtime Compute for Apache
Flink cluster:

1. When a Realtime Compute for Apache Flink cluster is started, one JobManager and several
TaskExecutors are started at the same time.

2. The client submits tasks to the JobManager.
3. The JobManager assigns tasks to TaskExecutors.
4. The TaskExecutors report the heartbeat and statistical information to the JobManager.

TaskExecutor tab
The TaskExecutor tab provides a list of tasks and the entries to their details.

The data lineage of a Realtime Compute job reflects the dependency between upstream and
downstream data of the job. In scenarios where the business dependency between the
upstream and downstream data of a job is complex, Realtime Compute provides a data
topology on the Data Lineage page to clearly show the dependency.

6.5.9. Data lineage

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De
velopment Guide

Blink

492 > Document Version: 20231114

https://stream-ap-southeast-3.console.aliyun.com

Go to the Data Lineage page
1. Go to the Job Administration page.

i. Log on to the Realtime Compute Console.
ii. In the top navigation bar, click Administration.
iii. In the Jobs section, click the target job name under the Job Name field.

2. At the top of the Job Administration page, click Data Lineage.

Data sampling
The Data Lineage page provides the data sampling feature for source tables and result tables
of jobs. The data to be sampled is the same as the data displayed on the data development
page. The data sampling feature allows you to check data at any time on the data
administration page, thus facilitating fault locating. To enable the data sampling feature,
follow these steps:

1. Click the table name in the upstream and downstream of the job.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De

velopment Guide

> Document Version: 20231114 493

https://stream-ap-southeast-3.console.aliyun.com

2. At the bottom of the Data Sampling page, click OK.

The Properties and Parameters tab provides detailed information about the current job, such
as the current running information and running history.

Go to the Properties and Parameters tab
1. Go to the Job Administration page in the Realtime Compute for Apache Flink console.

i. Log on to the Realtime Compute development platform.
ii. In the top navigation bar, click Administration.
iii. On the Jobs page that appears, click the target job name under the Job Name field.

2. On the Job Administration page, click the Properties and Parameters tab.

Code
On the Code tab, you can preview the SQL job code. In the upper-right corner of the Code
tab, click Edit Job to go to the Development page.

Resource Configuration
On the Resource Configuration tab, you can view the configuration of the resources that
are used in a job, such as CPUs, memory, and parallelism.
After auto scaling is enabled, you can query the auto scaling iteration history on the
Resource Configuration tab.

Note Only Realtime Compute for Apache Flink V3.0.0 and later allow you to
query the auto scaling iteration history.

Properties
On the Properties tab, you can view basic information about a job.

Runtime Parameters

6.5.10. Properties and parameters

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De
velopment Guide

Blink

494 > Document Version: 20231114

https://stream-ap-southeast-3.console.aliyun.com

On the Runtime Parameters tab, you can view the job running parameters, such as the
underlying checkpoint and start time.

History
On the History tab, you can view the operation information about a job, such as Operated
By, Start Offset, and End Time.

Parameters
On the Parameters tab, you can specify the job parameters supported by Realtime Compute
for Apache Flink. For example, you can customize the delimiter for debugging.

Realtime Compute offers job diagnosis to help you troubleshoot job issues.

Procedure

Note Only jobs that are in the running state can be diagnosed.

1. Log on to the Realtime Compute development platform.
2. In the top navigation bar, click Administration.
3. On the Administration page that appears, find the target job, move the pointer over the

More icon in the Actions column, and click Check.

Check metrics
Failover

Job failover: Check whether the job encountered a failover within the last 30 minutes.
Application Master (AM) failover : Check whether a failover is detected in AM.

Blink Metric Job latency: Check the job latency. If a latency occurs, the nodes with
backpressure are displayed.

High latency: The latency is longer than 100 seconds and shorter than 200 seconds.
Excessively high latency: The latency is 200 seconds or longer.

This tab displays the Yarn check result.
This tab displays the OS check result.

After you implement the business logic, and then publish and start a Realtime Compute job,
you need to optimize the job to meet performance requirements.

Purposes
Jobs can start and run properly.
The job latency and throughput meet performance requirements.
Resources can be used efficiently to reduce the cost.

Procedure
The following figure shows the procedure of job optimization.

6.5.11. Job diagnosis

6.6. Job optimization
6.6.1. Overview

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De

velopment Guide

> Document Version: 20231114 495

https://stream-ap-southeast-3.console.aliyun.com

1. Optimize the SQL code.
SQL optimization allows you to select an appropriate SQL implementation method based on
business requirements. For example, you can optimize aggregation functions, resolve data
hotspot issues, optimize the TopN algorithm, use built-in functions, deduplicate data
records, and avoid use of regular expressions. For more information, see Recommended
Flink SQL practices.

2. Optimize performance by adjusting parameter settings.
Adjust job parameter settings.
Select an underlying optimization policy. For example, you can enable miniBatch to
reduce state data access. For more information, see Job parameters.
Adjust parameter settings of upstream and downstream data storage.
Optimize the read and write operations performed on the upstream and downstream
storage systems. For example, you can read or write data in batches to improve the
throughput. You can also configure the cache policy to improve the efficiency of joining
dimension tables. For more information, see Upstream and downstream storage
parameters.

3. Optimize resource configuration automatically.
To simplify job optimization, Realtime Compute provides the automatic configuration
optimization feature. We recommend that you use this feature for job optimization. For
more information, see Performance optimization by using auto scaling.

4. Optimize resource configuration manually or repeat the optimization process.
Optimize resource configuration manually.
If automatic configuration optimization cannot meet your requirements, you can
manually optimize the resource configuration. For more information, see Optimize
performance by manual configuration.
Repeat the optimization process.
If the optimization result cannot meet your requirements, repeat the previous steps.

This topic describes the recommended syntax, configurations, and functions used to optimize
Flink SQL performance.

6.6.2. Recommended Flink SQL practices

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De
velopment Guide

Blink

496 > Document Version: 20231114

Optimize the Group By functions
Enable microBatch or miniBatch to improve the throughput
The microBatch and miniBatch policies are both used for micro-batch processing. If either of
the policies is enabled, Realtime Compute for Apache Flink processes data when the data
cache meets the trigger condition. This reduces the frequency at which Realtime Compute
for Apache Flink accesses the state data, and therefore improves the throughput and
reduces data output.
The microBatch and miniBatch policies are different from each other in terms of the trigger
mechanism. The miniBatch policy triggers micro-batch processing by using the timer
threads that are registered with each task. This consumes some thread scheduling
overheads. The microBatch policy is an enhancement of the miniBatch policy. The
microBatch policy triggers micro-batch processing based on event messages, which are
inserted into the data sources at a specific interval. The microBatch policy outperforms the
miniBatch policy because it provides higher data serialization efficiency, reduces
backpressure, and achieves higher throughput at a lower latency.

Use scenarios
Micro-batch processing achieves higher throughput at the expense of higher latency. We
recommend that you do not enable micro-batch processing in scenarios that require
extremely low latency. However, in data aggregation scenarios, we recommend that you
enable micro-batch processing to improve job performance.

Note You can also enable microBatch to resolve data jitter when data is
aggregated in two phases.

Enabling method
microBatch and miniBatch are disabled by default. To enable them, configure the
following parameters:

Enable window miniBatch in Realtime Compute for Apache Flink V3.2 or later. By de
fault, window miniBatch is disabled for Realtime Compute for Apache Flink V3.2 or l
ater.
sql.exec.mini-batch.window.enabled=true
The interval at which a large amount of data is generated. You must specify this
parameter when you enable microBatch. We recommend that you set this parameter to t
he same value as that of blink.miniBatch.allowLatencyMs.
blink.microBatch.allowLatencyMs=5000
When you enable microBatch, you must reserve the settings of the following two mi
niBatch parameters:
blink.miniBatch.allowLatencyMs=5000
The maximum number of data records that can be cached for each batch. You must se
t this parameter to avoid the out of memory (OOM) error.
blink.miniBatch.size=20000

Enable LocalGlobal to resolve common data hotspot issues
The LocalGlobal policy divides the aggregation process into two phases: local aggregation
and global aggregation. They are similar to the combine and reduce phases in MapReduce.
In the local aggregation phase, Realtime Compute for Apache Flink locally aggregates a
micro batch of data at each input node (LocalAgg), and generates an accumulator value for
each batch (accumulator). In the global aggregation phase, Realtime Compute for Apache
Flink merges the accumulator values (merge) to obtain the final result (GlobalAgg).
The LocalGlobal policy can eliminate data skew by using local aggregation and resolve data
hotspot issues in global aggregation. Therefore, job performance is enhanced.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De

velopment Guide

> Document Version: 20231114 497

Use scenarios
You can enable LocalGlobal to improve the performance of general aggregate functions,
such as SUM, COUNT, MAX, MIN, and AVG, and resolve data hotspot issues when you
execute these functions.

Note To enable LocalGlobal, you must define a user-defined aggregate
function (UDAF) to implement the merge method.

Enabling method
In Realtime Compute for Apache Flink V2.0 or later, LocalGlobal is enabled by default.
When the blink.localAgg.enabled parameter is set to true, LocalGlobal is enabled. This
parameter takes effect only when microBatch or miniBatch is enabled.
Verification
To determine whether LocalGlobal is enabled, check whether the
GlobalGroupAggregate or LocalGroupAggregate node exists in the generated
topology.

Enable PartialFinal to resolve data hotspot issues when you execute the COUNT DISTINCT
function
The LocalGlobal policy effectively improves the performance of general aggregate
functions, such as SUM, COUNT, MAX, MIN, and AVG. However, it is not effective for
improving the performance of the COUNT DISTINCT function. This is because local
aggregation cannot effectively remove duplicate distinct keys. As a result, a large amount
of data remains stacked up in the global aggregation phase.
If you execute the COUNT DISTINCT function in Realtime Compute for Apache Flink versions
earlier than V2.2.0, you must add a layer that scatters data by a distinct key so that you
can divide the aggregation process into two phases to resolve data hotspot issues.
Realtime Compute for Apache Flink V2.2.0 and later versions provide the PartialFinal
policy to automatically scatter data and divide the aggregation process.

Use scenarios
The PartialFinal policy applies to scenarios in which the aggregation performance cannot
meet your requirements when you use the COUNT DISTINCT function.

Note
You cannot enable PartialFinal in the Flink SQL code that contains UDAFs.
We recommend that you enable PartialFinal only when the amount of data is
large. This is because the PartialFinal policy automatically scatters data to two
aggregation layers and introduces additional network shuffling. If the amount
of data is not large, resources are wasted.

Enabling method
PartialFinal is disabled by default. To enable PartialFinal, set the
 blink.partialAgg.enabled parameter to true.
Verification
To determine whether PartialFinal is enabled, check whether expandable nodes exist in
the generated topology, or whether the number of aggregation layers changes from one
to two.

Use the AGG WITH FILTER syntax to improve job performance when you use the COUNT
DISTINCT function

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De
velopment Guide

Blink

498 > Document Version: 20231114

Note Only Realtime Compute for Apache Flink V2.2.2 and later versions support
this syntax.

Statistical jobs record unique visitors (UVs) in different dimensions, such as UVs of the
entire network, UVs of mobile clients, and UVs of PCs. We recommend that you use the
standard AGG WITH FILTER syntax instead of AGG WITH CASE WHEN to implement multi-
dimensional statistical analysis. The SQL optimizer of Realtime Compute for Apache Flink
can analyze the filter parameter. This way, Realtime Compute for Apache Flink can execute
the COUNT DISTINCT function on the same field with different filter conditions by sharing
the state data. This reduces the read and write operations on the state data. The
performance test shows that the use of AGG WITH FILTER improves job performance by one
time higher than the use of AGG WITH CASE WHEN.

Use scenarios
We recommend that you replace the AGG WITH CASE WHEN syntax with the AGG WITH
FILTER syntax. This particularly improves job performance when you execute the COUNT
DISTINCT function on the same field with different filter conditions.
Original statement

COUNT(distinct visitor_id) as UV1 , COUNT(distinct case when is_wireless='y' then v
isitor_id else null end) as UV2

Optimized statement

COUNT(distinct visitor_id) as UV1 , COUNT(distinct visitor_id) filter (where is_wir
eless='y') as UV2

Optimize the TopN algorithm
TopN algorithm
If the input streams of TopN are static streams (such as source), TopN supports only one
algorithm: AppendRank. If the input streams of TopN are dynamic streams (such as streams
that are processed by using the AGG or JOIN function), TopN supports the following three
algorithms in descending order of performance: UpdateFastRank, UnaryUpdateRank, and
RetractRank. The name of the algorithm used is contained in the node name in the
topology.

UpdateFastRank is the optimal algorithm.
The following two conditions must be met if you want to use this algorithm:

The input streams must contain the primary key information, such as ORDER BY AVG.
The values of the fields or functions in the ORDER BY clause are updated monotonically
in the opposite order of sorting. For example, you can define the ORDER BY clause as
ORDER BY COUNT, ORDER BY COUNT_DISTINCT, or ORDER BY SUM (positive) DESC.
This optimization is supported only in Realtime Compute for Apache Flink V2.2.2 or
later.
If you want to obtain an optimization plan, you must add a filter condition in which the
SUM parameter is positive when you use ORDER BY SUM DESC, and make sure that the
value of total_fee is positive.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De

velopment Guide

> Document Version: 20231114 499

insert
 into print_test
SELECT
 cate_id,
 seller_id,
 stat_date,
 pay_ord_amt -- The rownum field is not included in the output data. This reduce
s the amount of output data to be written to the result table.
FROM (
 SELECT
 *,
 ROW_NUMBER () OVER (
 PARTITION BY cate_id,
 stat_date -- Ensure that the stat_date field is included. Otherwise, the
data may be disordered when the state data expires.
 ORDER
 BY pay_ord_amt DESC
) as rownum -- Sort data by the sum of the input data.
 FROM (
 SELECT
 cate_id,
 seller_id,
 stat_date,
 -- Note: The result of the SUM function is monotonically increasing bec
ause the values returned by the SUM function are positive. Therefore. TopN can
use optimized algorithms to obtain top 100 data records.
 sum (total_fee) filter (
 where
 total_fee >= 0
) as pay_ord_amt
 FROM
 random_test
 WHERE
 total_fee >= 0
 GROUP
 BY cate_name,
 seller_id,
 stat_date
) a
)
WHERE rownum <= 100;

UnaryUpdateRank is second only to UpdateFastRank in terms of performance. To use this
algorithm, make sure that the input streams contain the primary key information.
RetractRank ranks last in terms of performance. We recommend that you do not use this
algorithm in the production environment. Check input streams. If input streams contain
the primary key information, use UnaryUpdateRank or UpdateFastRank to optimize job
performance.

Optimization method
Exclude the rownum field

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De
velopment Guide

Blink

500 > Document Version: 20231114

Do not include rownum in the output of TopN. We recommend that you sort the results
immediately after they are displayed in the frontend. This can significantly reduce the
amount of data that needs to be written to the result table. For more information, see
TopN.
Increase the cache size of TopN
TopN provides a state cache to improve the access efficiency of state data. This improves
the performance. The following formula is used to calculate the hit rate of TopN cache:

cache_hit = cache_size*parallelism/top_n/partition_key_num

Take Top100 as an example. Assume that the cache contains 10,000 records and the
parallelism is 50. If the number of keys for the PARTITION BY function is 100,000, the
cache hit rate equals 5% (10000 × 50/100/100000 = 5%). The hit rate is low, which
indicates that large amounts of requests will access the disk state data. As a result, job
performance significantly deteriorates. Therefore, if the number of keys for the
PARTITION BY function is large, you may increase the cache size and heap memory of
TopN. For more information, see Optimize performance by manual configuration.

In this example, if you increase the cache size of TopN from the default value 1
0000 to 200000, the cache hit rate may reach 100% (200000 × 50/100/100000 = 100%).
blink.topn.cache.size=200000

Include a time field in the PARTITION BY function
For example, you want to include the day field in your statement for a daily ranking.
Otherwise, the TopN result may become disordered when the state data expires.

Optimize the deduplication performance

Note Only Blink 3.2.1 supports efficient deduplication solutions.

Input streams of Realtime Compute for Apache Flink may contain duplicate data. Therefore,
deduplication is highly required. Realtime Compute for Apache Flink offers two policies to
efficiently remove duplicate data: Deduplicate Keep FirstRow and Deduplicate Keep LastRow.

Syntax
Flink SQL does not support deduplication statements. To reserve the first or last duplicate
record under the specified primary key and discard the rest of the duplicate records as
required, Realtime Compute for Apache Flink uses the ROW_NUMBER OVER WINDOW
statement of Flink SQL. Deduplication is a special TopN statement.

SELECT *
FROM (
 SELECT *,
 ROW_NUMBER() OVER ([PARTITION BY col1[, col2..]
 ORDER BY timeAttributeCol [asc|desc]) AS rownum
 FROM table_name)
WHERE rownum = 1

Element Description

ROW_NUMBER() Specifies an over window to compute the row
number. The row number starts from 1.

PARTITION BY col1[, col2..] Optional. Specifies the partition key columns
that store primary keys of duplicate records.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De

velopment Guide

> Document Version: 20231114 501

ORDER BY timeAttributeCol [asc|desc])

Specifies the column that sorts records based
on a time attribute (proctime or rowtime). You
can sort records in ascending order
(Deduplicate Keep FirstRow) or descending
order (Deduplicate Keep LastRow) based on the
time attribute.

rownum
Specifies the number of rows. You can set this
element in either of the following ways:
 rownum = 1 and rownum <= 1 .

Based on the preceding syntax, deduplication includes two steps:
i. Use the ROW_NUMBER() window function to sort data by the specified time attribute and

mark the data with rankings.

Note
If the time attribute is proctime, Realtime Compute for Apache Flink removes
duplicate records based on the time at which the records are processed by
Realtime Compute for Apache Flink. In this case, the ranking may vary each
time.
If the time attribute is rowtime, Realtime Compute for Apache Flink removes
duplicate records based on the time at which the records are written to
Realtime Compute for Apache Flink. In this case, the ranking always remains
the same.

ii. Reserve the first record under the specified primary key and remove the rest of the
duplicate records.

Note You can sort records in ascending or descending order of the time
attribute.

Deduplicate Keep FirstRow: Realtime Compute for Apache Flink sorts records in
ascending order of the time attribute and reserves the first record under the
specified primary key.
Deduplicate Keep LastRow: Realtime Compute for Apache Flink sorts records in
descending order of the time attribute and reserves the first record under the
specified primary key.

Deduplicate Keep FirstRow
If you select the Deduplicate Keep FirstRow policy, Realtime Compute for Apache Flink
reserves the first record under the specified primary key but discards the rest of the
duplicate records. In this case, the state data stores only the primary key information, and
the access efficiency of the state data is significantly improved. The following sample code
is an example:

SELECT *
FROM (
 SELECT *,
 ROW_NUMBER() OVER (PARTITION BY b ORDER BY proctime) as rowNum
 FROM T
)
WHERE rowNum = 1

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De
velopment Guide

Blink

502 > Document Version: 20231114

Note The preceding code removes duplicate records from table T based on the b
field, and reserves the first record under the specified primary key based on the system
time. The proctime attribute indicates the processing time attribute. Realtime Compute
for Apache Flink sorts data records in table T based on this attribute. To remove
duplicate records based on the system time, you can also call the PROCTIME function
to avoid the need to declare the proctime attribute.

Deduplicate Keep LastRow
If you select the Deduplicate Keep LastRow policy, Realtime Compute for Apache Flink
reserves the last record under the specified primary key and discards the rest of the
duplicate records. This policy slightly outperforms the LAST_VALUE function in terms of
performance. The following sample code of Deduplicate Keep LastRow is an example:

SELECT *
FROM (
 SELECT *,
 ROW_NUMBER() OVER (PARTITION BY b, d ORDER BY rowtime DESC) as rowNum
 FROM T
)
WHERE rowNum = 1

Note The preceding code removes duplicate records in table T based on the b
and d fields, and reserves the last record under the specified primary key based on the
time at which the records are written to Realtime Compute for Apache Flink. The
rowtime attribute indicates the event time at which the records are written to Realtime
Compute for Apache Flink. Realtime Compute for Apache Flink sorts records in table T
based on this attribute.

Use efficient built-in functions
Use built-in functions to replace user-defined extensions (UDXs)
Built-in functions of Realtime Compute for Apache Flink are under continual optimization.
We recommend that you use built-in functions to replace UDXs whenever possible.
Realtime Compute for Apache Flink V2.0 optimizes built-in functions in the following
aspects:

Improves serialization and deserialization efficiency.
Allows operations at the byte level.

Use single-character delimiters in the KEYVALUE function
The signature of the KEYVALUE function is KEYVALUE(content, keyValueSplit, keySplit,
keyName) . When keyValueSplit and KeySplit are single-character delimiters, such as a colon
(:) or a comma (,), Realtime Compute for Apache Flink uses an optimization algorithm.
Realtime Compute for Apache Flink directly searches for the required keyName values
among the binary data without the need to segment the entire content. This improves job
performance by approximately 30%.
Use the MULTI_KEYVALUE function when multiple key-value pairs exist

Note The MULTI_KEYVALUE function is supported only in Realtime Compute for
Apache Flink V2.2.2 or later.

Job performance is significantly affected if a query involves multiple KEYVALUE functions on
the same content. Assume that the content contains 10 key-value pairs. To extract all the
10 values and use them as fields, you must write 10 KEYVALUE functions to parse the
content 10 times. As a result, job performance deteriorates.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De

velopment Guide

> Document Version: 20231114 503

In this case, we recommend that you use the table-valued function MULTI_KEYVALUE, which
requires only one SPLIT parsing on the content. This improves job performance by 50% to
100%.
Use the LIKE operator with caution

To match records that start with the specified content, use LIKE 'xxx%' .
To match records that end with the specified content, use LIKE '%xxx' .
To match records that contain the specified content, use LIKE '%xxx%' .
To match records that are the same as the specified content, use LIKE 'xxx' , which is
equivalent to str = 'xxx' .
To match an underscore (_), use LIKE '%seller/id%' ESCAPE '/ . The underscore
(_) is escaped because it is a single-character wildcard in SQL and can match any
characters. If you use LIKE '%seller_id%' , a lot of results are returned, such as
 seller_id , seller#id , sellerxid , and seller1id . These results may be
unsatisfactory.

Avoid the use of regular expressions
Running regular expressions can be time-consuming and may require a hundred more
times of computing resources in comparison with other operations such as plus, minus,
multiplication, and division. If you run regular expressions under some particular
circumstances, your job may be stuck in an infinite loop. Therefore, use the LIKE operator
whenever possible. For information about common regular expressions, click the following
related link:

REGEXP
REGEXP_EXTRACT
REGEXP_REPLACE

Optimize network transmission
Common partitioner policies include:

KeyGroup/Hash: distributes data based on specified keys.
Rebalance: distributes data to each channel by using round-robin scheduling.
Dynamic-Rebalance: dynamically distributes data to channels with lower load based on the
load status of output channels.
Forward: similar to Rebalance if keys and channels are unchained. If keys and channels are
chained, Realtime Compute for Apache Flink distributes data under specified keys to the
related channels.
Rescale: distributes data in one-to-many or many-to-one mode between input and output
channels.
Use Dynamic-Rebalance to replace Rebalance
When you use Dynamic-Rebalance, Realtime Compute for Apache Flink writes data to
subpartitions with lower load based on the amount of buffered data in each subpartition so
that it can achieve dynamic load balancing. Compared with the static Rebalance policy,
Dynamic-Rebalance can balance the load and improve the overall job performance when
the computing capacity of output computing nodes is unbalanced. If you find the load of
output nodes is unbalanced when you use Rebalance, you may prefer to use Dynamic-
Rebalance. To use Dynamic-Rebalance, set the task.dynamic.rebalance.enabled
parameter to true. The default value is false.
Use Rescale to replace Rebalance

Note Rescale is supported only in Realtime Compute for Apache Flink V2.2.2 or
later.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De
velopment Guide

Blink

504 > Document Version: 20231114

https://stackoverflow.com/questions/4500507/infinite-loop-in-regex-in-java

Assume that you have 5 parallel input nodes and 10 parallel output nodes. If you use
Rebalance, each input node distributes data to all 10 output nodes by using round-robin
scheduling. If you use Rescale, each input node only needs to distribute data to two output
nodes by using round-robin scheduling. This reduces the number of channels, increases the
buffering speed of each subpartition, and therefore improves the network efficiency. When
input data is even and the numbers of parallel input and output nodes are the same, you
can use Rescale to replace Rebalance. To use Rescale, set the enable.rescale.shuffling
parameter to true. The default value is false.

Recommended configuration
In summary, we recommend that you use the following job configuration:
Exactly-once semantics.
blink.checkpoint.mode=EXACTLY_ONCE
The checkpoint interval in milliseconds.
blink.checkpoint.interval.ms=180000
blink.checkpoint.timeout.ms=600000
Realtime Compute for Apache Flink V2.X uses Niagara as the state backend and uses it
to set the lifecycle (in milliseconds) of the state data.
state.backend.type=niagara
state.backend.niagara.ttl.ms=129600000
Realtime Compute for Apache Flink V2.X enables micro-batch processing with an interva
l of five seconds.
blink.microBatch.allowLatencyMs=5000
The allowed latency for a job.
blink.miniBatch.allowLatencyMs=5000
The size of a batch.
blink.miniBatch.size=20000
Enable local aggregation. This feature is enabled by default in Realtime Compute for
Apache Flink V2.X, but you must manually enable it if you use Realtime Compute for Apac
he Flink V1.6.4.
blink.localAgg.enabled=true
Enable PartialFinal to resolve data hotspot issues when you execute the COUNT DISTINC
T function in Realtime Compute for Apache Flink V2.X.
blink.partialAgg.enabled=true
Enable UNION ALL for optimization.
blink.forbid.unionall.as.breakpoint.in.subsection.optimization=true
Enable OBJECT REUSE for optimization.
#blink.object.reuse=true
Configure garbage collection for optimization. (You cannot set this parameter if you
use a Log Service source table.)
blink.job.option=-yD heartbeat.timeout=180000 -yD env.java.opts='-verbose:gc -XX:NewRat
io=3 -XX:+PrintGCDetails -XX:+PrintGCDateStamps -XX:ParallelGCThreads=4'
Specify the time zone.
blink.job.timeZone=Asia/Shanghai

To improve user experience, Realtime Compute allows you to use automatic configuration to
optimize job performance.

6.6.3. Performance optimization by using
automatic configuration

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De

velopment Guide

> Document Version: 20231114 505

Note Automatic configuration applies to Blink 1.0 and Blink 2.0.

Background and scope
If all the operators and both the upstream and downstream storage systems of your Realtime
Compute job meet the performance requirements and remain stable, automatic configuration
can help you properly adjust job configurations, such as operator resources and parallelism. It
also helps optimize your job throughout the entire process to resolve performance issues such
as low throughput or upstream and downstream backpressure.
In the following scenarios, you can use this feature to optimize job performance but cannot
eliminate job performance bottlenecks. To eliminate the performance bottlenecks, manually
configure the resources or contact the Realtime Compute support team.

Performance issues exist in the upstream or downstream storage systems of a Realtime
Compute job.

Performance issues in the data source, such as insufficient DataHub partitions or Message
Queue (MQ) throughput. In this case, you must increase the partitions of the relevant
source table.
Performance issues in a data sink, such as a deadlock in ApsaraDB RDS.

Performance issues of user-defined extensions (UDXs) such as user-defined functions
(UDFs), user-defined aggregate functions (UDAFs), and user-defined table-valued functions
(UDTFs) in your Realtime Compute job.

Description
New jobs
i. Publish a job.

a. After you complete SQL development and syntax check on the Development page,
click Publish. The Publish New Version dialog box appears.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De
velopment Guide

Blink

506 > Document Version: 20231114

b. Specify Resource Configuration Method.
Automatic CU Configuration: If you select this option, you can specify the number
of compute units (CUs). The automatic configuration algorithm generates an
optimized resource configuration and assigns a value for the number of CUs based on
the default configuration. If you use automatic CU configuration for the first time, the
default number of CUs is used. This algorithm generates an initial configuration
based on empirical data when you use automatic CU configuration for the first time.
We recommend that you select Automatic CU Configuration if your job has been
running for 5 to 10 minutes and its metrics, such as source RPS, remain stable for 2
to 3 minutes. You can obtain the optimal configuration after you repeat the
optimization process for three to five times.
Use Latest Manually Configured Resources : The latest saved resource
configuration is used. If the latest resource configuration is generated based on
automatic CU configuration, the latest resource configuration is used. If the latest
resource configuration is obtained based on the manual configuration, the manual
configuration is used.

ii. Use the default configuration to start the job.
a. Use the default configuration to start the job, as shown in the following figure.

b. On the Administration page, find the job and click Start in the Actions column to start
the job.

Assume that the default number of CUs generated the first time is 71.

Note Make sure that your job runs longer than 10 minutes and its metrics such
as source RPS remain stable for 2 to 3 minutes before you select Automatic CU
Configuration for Resource Configuration Method.

iii. Use the automatic CU configuration to start a job.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De

velopment Guide

> Document Version: 20231114 507

a. Resource performance optimization
If you select Automatic CU Configuration for Resource Configuration Method and
specify 40 CUs to start your job, you can change the number of CUs based on your job
to optimize resource performance.

Determine the minimum number of CUs.
We recommend that you set the number of CUs to a value that is greater than or
equal to 50% of the default value. The number of CUs cannot be less than 1. Assume
that the default number of CUs for automatic CU configuration is 71. The
recommended minimum number of CUs is 36, which is calculated by using the
following formula: 71 CUs × 50% = 35.5 CUs.
Increase the number of CUs.
If the throughput of your Realtime Compute job does not meet your requirements,
increase the number of CUs. We recommend that you increase the number of CUs by
more than 30% of the current value. For example, if the number of CUs that you
specified last time is 10 CUs, you can increase the number to 13.
Repeat the optimization process.
If the first optimization attempt does not meet your requirements, repeat the process
until you obtain the desired results. You can change the number of CUs based on
your job status after each optimization attempt.

b. View the result of optimization. The following figure shows an example.

Note Do not select Use Latest Manually Configured Resources for a
new job. Otherwise, an error is returned.

Existing jobs

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De
velopment Guide

Blink

508 > Document Version: 20231114

The following figure shows the optimization process of automatic configuration.

Note
Before you use automatic configuration for a job that is in the running state,
check whether stateful operations are involved. This is because the saved
state data of a job may be cleared during the optimization process of
automatic configuration.
If you make changes to a job, for example, modifying SQL statements or
changing the Realtime Compute version, automatic configuration may fail.
These changes may lead to topology changes, which results in some issues.
For example, curve charts may not be able to display the latest data, or the
state data may not able to be used for fault tolerance. In this case, resource
configurations cannot be optimized based on the job running history and
therefore an error is returned when you perform automatic configuration. To
rectify the fault, you must treat the changed job as a new job and repeat the
previous operations.

Procedure
a. Suspend the job.

b. Repeat the steps performed for new jobs and resume the job with the latest
configuration.

FAQ
The optimization result of automatic configuration may not be accurate in the following
scenarios:

If the job runs only for a short period of time, the data collected during data sampling is
insufficient. We recommend that you increase the running duration of the job and make
sure that the curves of job metrics such as source RPS remain stable for at least 2 to 3
minutes.
A job fails. We recommend that you check and fix the failure.
Only a small amount of data is available for a job. We recommend that you retrieve more

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De

velopment Guide

> Document Version: 20231114 509

historical data.
The effect of automatic configuration is affected by multiple factors. Therefore, the latest
configuration obtained by using automatic configuration may not be optimal. If the effect of
automatic configuration does not meet your requirements, you can manually configure the
resources. For more information, see Optimize performance by manual configuration.

Recommendations
To help automatic configuration accurately collect the runtime metric information of a job,
make sure that the job runs stably for more than 10 minutes before you apply automatic
configuration to the job.
Job performance can be improved after you use automatic configuration for three to five
times.
When you use automatic configuration, you can specify the start offset to retrieve historical
data or even accumulate large amounts of data for a job to create backpressure to
accelerate the optimization effect.

Method used to determine the effectiveness of automatic
configuration
Automatic configuration of Realtime Compute is enabled based on a JSON configuration file.
After you use automatic configuration to optimize a job, you can view the JSON configuration
file to check whether the feature is running as expected.

You can view the JSON configuration file by using one of the following methods:
i. View the file on the job edit page, as shown in the following figure.

ii. View the file on the Job Administration page, as shown in the following figure.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De
velopment Guide

Blink

510 > Document Version: 20231114

JSON configuration description

"autoconfig" : {
 "goal": { // The goal of automatic configuration.
 "maxResourceUnits": 10000.0, // The maximum number of CUs for a Blink job. T
his value cannot be changed. Therefore, you can ignore this item when you check wheth
er the feature is running as expected.
 "targetResoureUnits": 20.0 // The number of CUs that you specified. The spec
ified number of CUs is 20.
 },
 "result" : { // The result of automatic configuration. We recommend that you pay
attention to this item.
 "scalingAction" : "ScaleToTargetResource", // The action of automatic
configuration. *
 "allocatedResourceUnits" : 18.5, // The total resources allocated by automatic
configuration.
 "allocatedCpuCores" : 18.5, // The total CPU cores allocated by automatic
configuration.
 "allocatedMemoryInMB" : 40960 // The total memory size allocated by
automatic configuration.
 "messages" : "xxxx" // We recommend that you pay attention to these messages.
*
 }
}

scalingAction: If the value of this parameter is InitialScale , this is the first time that
you use automatic configuration. If the value of this parameter is
 ScaleToTargetResource , this is not the first time that you use automatic configuration.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De

velopment Guide

> Document Version: 20231114 511

If no message appears, automatic configuration runs properly. If some messages appear,
you must analyze these messages. Messages are categorized into the following two
types:

Warning: This type of message indicates that automatic configuration runs properly but
you must pay attention to potential issues, such as insufficient partitions in a source
table.
Error or exception: This type of message indicates that automatic configuration failed.
The following error message is usually displayed: Previous job statistics and
configuration will be used . The automatic configuration for a job fails in the following
two scenarios:

The job or Blink version is modified before you use automatic configuration. In this
case, the previous running information cannot be used for automatic configuration.
An error message that contains "exception" is reported when you use automatic
configuration. In this case, you must analyze the error based on the job running
information and logs.

Error messages
IllegalStateException
If the following error messages are displayed, the state data cannot be used for fault
tolerance. To resolve this issue, terminate the job, clear its state, and then specify the start
offset to re-read the data.
If you cannot migrate the job to a backup node, perform the following steps to mitigate the
negative impact of service interruption: Roll back the job to an earlier version and specify the
start offset to re-read the data during off-peak hours. To roll back the job, click Versions on
the right side of the Development page. On the page that appears, move the pointer over
More in the Actions column, click Compare, and then click Roll Back to Version.

java.lang.IllegalStateException: Could not initialize keyed state backend.
 at
org.apache.flink.streaming.api.operators.AbstractStreamOperator.initKeyedState(AbstractStre
amOperator.java:687)
 at
org.apache.flink.streaming.api.operators.AbstractStreamOperator.initializeState(AbstractStr
eamOperator.java:275)
 at
org.apache.flink.streaming.runtime.tasks.StreamTask.initializeOperators(StreamTask.java:870
)
 at
org.apache.flink.streaming.runtime.tasks.StreamTask.initializeState(StreamTask.java:856)

 at org.apache.flink.streaming.runtime.tasks.StreamTask.invoke(StreamTask.java:292)
 at org.apache.flink.runtime.taskmanager.Task.run(Task.java:762)
 at java.lang.Thread.run(Thread.java:834)
Caused by: org.apache.flink.api.common.typeutils.SerializationException: Cannot seriali
ze/deserialize the object.
 at
com.alibaba.blink.contrib.streaming.state.AbstractRocksDBRawSecondaryState.deserializeState
Entry(AbstractRocksDBRawSecondaryState.java:167)
 at
com.alibaba.blink.contrib.streaming.state.RocksDBIncrementalRestoreOperation.restoreRawStat
eData(RocksDBIncrementalRestoreOperation.java:425)
 at
com.alibaba.blink.contrib.streaming.state.RocksDBIncrementalRestoreOperation.restore(RocksD
BIncrementalRestoreOperation.java:119)

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De
velopment Guide

Blink

512 > Document Version: 20231114

BIncrementalRestoreOperation.java:119)
 at
com.alibaba.blink.contrib.streaming.state.RocksDBKeyedStateBackend.restore(RocksDBKeyedStat
eBackend.java:216)
 at
org.apache.flink.streaming.api.operators.AbstractStreamOperator.createKeyedStateBackend(Abs
tractStreamOperator.java:986)
 at
org.apache.flink.streaming.api.operators.AbstractStreamOperator.initKeyedState(AbstractStre
amOperator.java:675)
 ... 6 more
Caused by: java.io.EOFException
 at java.io.DataInputStream.readUnsignedByte(DataInputStream.java:290)
 at org.apache.flink.types.StringValue.readString(StringValue.java:770)
 at
org.apache.flink.api.common.typeutils.base.StringSerializer.deserialize(StringSerializer.ja
va:69)
 at
org.apache.flink.api.common.typeutils.base.StringSerializer.deserialize(StringSerializer.ja
va:28)
 at
org.apache.flink.api.java.typeutils.runtime.RowSerializer.deserialize(RowSerializer.java:16
9)
 at
org.apache.flink.api.java.typeutils.runtime.RowSerializer.deserialize(RowSerializer.java:38
)
 at
com.alibaba.blink.contrib.streaming.state.AbstractRocksDBRawSecondaryState.deserializeState
Entry(AbstractRocksDBRawSecondaryState.java:162)
 ... 11 more

Realtime Compute for Apache Flink earlier than V3.0.0 provides AutoConf to improve job
performance. However, AutoConf requires you to frequently restart the job. Realtime
Compute for Apache Flink V3.0.0 and later versions support auto scaling to resolve this issue.
After you start a job, Realtime Compute for Apache Flink adjusts the job configuration to
reach the preset performance goal based on resource configuration rules. This process does
not require any manual operations.

Note
Auto scaling is supported only in Realtime Compute for Apache Flink V3.0.0 and
later.
Before you upgrade Realtime Compute for Apache Flink to V3.0.0, delete all
PlanJSON files generated in Realtime Compute for Apache Flink earlier than V3.0.0
and reacquire configuration files.

Enable auto scaling
You can enable auto scaling when you publish a job.

6.6.4. Performance optimization by using
auto scaling

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De

velopment Guide

> Document Version: 20231114 513

1. Go to the job editing page on the Realtime Compute for Apache Flink development
platform.
i. Log on to the Realtime Compute development platform.
ii. In the top navigation bar, click Development.
iii. On the Development page that appears, double-click the target job, which may be

nested under a folder, to go to the job development page.
2. In the upper part of the job editing section, click Publish to go to the Publish New

Version page.
3. In the Initial Resources step, select a resource type and click Next.

Use last time Auto Scaling: uses the PlanJSON file for the latest auto scaling to start
the job. You can select Use last time Auto Scaling when the following conditions are
met:

The job is published with auto scaling enabled and uses the latest configuration.
The job is in the Suspended state.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De
velopment Guide

Blink

514 > Document Version: 20231114

https://stream-ap-southeast-3.console.aliyun.com

The auto scaling configuration is obtained. To obtain the auto scaling configuration,
click Configurations on the right, move the pointer to Configurations in the upper-
right corner, and select Acquire Auto Scaling Configuration .

Default: uses the default resource configuration to start the job. You can select this
option to publish a new job or an existing job whose logic is not modified and compatible
with Realtime Compute for Apache Flink.
Manual: uses manually configured resource configuration to start the job. Select this
option to manually configure resources or modify the auto scaling configuration.

4. In the Check step, check the job and click Next.
5. In the Resource Configuration step, configure auto scaling parameters and click Next.

Parameter Description

Automatic Scaling Specifies whether to enable auto scaling. Select ON.

Maximum number of
PlanJson CUs

The maximum available CUs for the job. One CU consists of 1
CPU core and 4 GB of memory. The value of this parameter
must be less than the number of available CUs in the project.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De

velopment Guide

> Document Version: 20231114 515

Optimization Policy
The policy for optimizing the job configuration. Valid value: Data
Pending Time. Realtime Compute for Apache Flink optimizes the
job configuration based on Optimization Policy and Expected
Value.

Expected Value
The threshold of the data pending time, in seconds. If data from
the data source is pending for a period of time that exceeds the
threshold, Realtime Compute for Apache Flink triggers auto
scaling to adjust the parallelism for the job.

Note For example, set Expected Value to 5. If data from the data source is
pending for more than 5 seconds, Realtime Compute for Apache Flink keeps reducing
the parallelism for the job until the pending time is shortened to less than 5 seconds.

6. In the Publish File step, click Publish.
7. Start the job. For more information about this issue, see Start a job.

Disable auto scaling

Note You can disable auto scaling for a job only if auto scaling is enabled for the
job when the job is published.

You can disable auto scaling for a job in the Running state.
1. Go to the Job Administration page on the Realtime Compute for Apache Flink

development platform.
i. Log on to the Realtime Compute development platform.
ii. In the top navigation bar, click Administration.
iii. On the Jobs page that appears, click the target job name under the Job Name field.

2. Click Disable Auto Scaling in the upper-right corner.
3. Click Confirm.

Note The actions in the Auto Configuration column on the Job Administration
page are available only if auto scaling is enabled when you publish the job.

View information about auto scaling

Note Go to the Job Administration page. To go to the Job Administration page,
perform the following steps:

1. Log on to the Realtime Compute development platform.
2. In the top navigation bar, click Administration.
3. On the Jobs page that appears, click the target job name under the Job Name field.

AutoScale Metric
Navigate to Curve Charts > Overview to view information about auto scaling.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De
velopment Guide

Blink

516 > Document Version: 20231114

https://stream-ap-southeast-3.console.aliyun.com
https://stream-ap-southeast-3.console.aliyun.com

Metric Description

Auto Scaling Successes and Failures The number of successful and failed auto
scaling operations

CPUs Consumed By Auto Scaling The CPU resources used for auto scaling.

Memory Consumed By Auto Scaling The memory resources used for auto scaling.

Information about the PlanJSON file generated for auto scaling
On the Job Administration page, navigate to Properties and Parameters > Resource
Configuration > Plans. Select the required version to view information about the
PlanJSON file that is generated for auto scaling.

FAQ
Q: What do I do if auto scaling cannot be triggered?
A: To troubleshoot this issue, perform the following steps:

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De

velopment Guide

> Document Version: 20231114 517

Check whether the job frequently fails. To trigger auto scaling, make sure that the job is
in correct logic and runs in a stable manner.
View JobManager logs to check whether system exceptions occur.

Q: What do I do if auto scaling does not take effect?
A: To troubleshoot this issue, perform the following steps:
i. Check whether the resources consumed by the job reach the upper limit.
ii. Check the source node logic to determine whether excessive operators are connected to

the source node. If excessive operators are connected to the source node, edit the
PlanJSON file to remove some operators. For more information, see Optimize
performance by manual configuration.

iii. View JobManager logs to check whether system exceptions occur.
Q: What issues might I run into if I enable auto scaling?
A:

The job is automatically restarted.
If you enable auto scaling, Realtime Compute for Apache Flink adjusts the parallelism and
resources based on the number of data streams. The job may automatically restart the
job to adjust resources when the data streams increase or decrease.
Data transmission is delayed within a short period of time.
When the data streams enter the off-peak period, Realtime Compute for Apache Flink
triggers auto scaling to reduce the parallelism and resources. When the data streams
increase, the resources may become insufficient for data transmission, which causes
delay within a short period of time.
The job cannot be resumed.
In some scenarios, auto scaling does not work, and the job may be delayed. Realtime
Compute for Apache Flink has to frequently adjust the job configuration. As a result, the
job cannot be resumed.
The parallelism is reduced and then increased.
For a job that uses window functions or aggregate functions, when the state data
increases, the performance for accessing the state data degrades, and the parallelism is
reduced when the job is started. When the job is running, the parallelism increases as the
state data accumulates until the amount of the state data becomes steady.

You can optimize the performance of a Realtime Compute for Apache Flink job by adjusting
the settings of job, resource, and upstream and downstream storage parameters.

Overview
You can configure the following types of parameters to optimize job performance:

Upstream and downstream storage parameters
Job parameters, such as miniBatch
Resource parameters, such as parallelism, core, and heap_memory

This topic describes how to configure the preceding three types of parameters. After you
reconfigure parameters for a job, you must terminate and then start the job, or suspend and
then resume the job to apply new settings. For more information, see Apply new
configurations.

6.6.5. Optimize performance by manual
configuration

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De
velopment Guide

Blink

518 > Document Version: 20231114

Upstream and downstream storage parameters
In Realtime Compute for Apache Flink, each data record can trigger read and write operations
on the source and result tables. This affects the performance of upstream and downstream
storage resources. To address this performance issue, you can configure batch size
parameters to specify the number of data records that can be read from a source table or
written to a result table at a time. The following table describes the source and result tables
that support batch size parameters.

Table Parameter Description Value

DataHub
source table

batchReadSiz
e

The maximum number of data
records that can be read at a
time.

Optional. Default value: 10.

DataHub
result table batchSize

The maximum number of data
records that can be written at a
time.

Optional. Default value: 300.

Log Service
source table batchGetSize

The maximum number of log
items that can be read from a
log group at a time.

Optional. Default value: 100.

AnalyticDB
for MySQL
V2.0 result
table

batchSize
The maximum number of data
records that can be written at a
time.

Optional. Default value: 1000.

ApsaraDB
RDS result
table

batchSize
The maximum number of data
records that can be written at a
time.

Optional. Default value: 4096.

Note To configure the batch data read and write feature, you can add the
preceding parameters to the WITH clause in a DDL statement for a storage system. For
example, add batchReadSize='<number>' to the WITH clause.

Job parameters
The miniBatch parameter can be used only to optimize the GROUP BY operator. If you use
Flink SQL to process streaming data, Realtime Compute for Apache Flink reads state data
each time a data record arrives. This consumes a large number of I/O resources. If you
configure the miniBatch parameter, Realtime Compute for Apache Flink uses the same key
to read the state data only once for the data records and generates only the latest data
record. This reduces the frequency to read the state data and minimizes downstream data
updates. You can configure the miniBatch parameter based on the following rules:

After you add parameters for a job, terminate and then start the job to apply the new
settings.
After you change parameter settings for a job, suspend and then resume the job to apply
the new settings.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De

velopment Guide

> Document Version: 20231114 519

Enable window miniBatch in Realtime Compute for Apache Flink V3.2 and later. By defau
lt, window miniBatch is disabled in Realtime Compute for Apache Flink V3.2 and later.
sql.exec.mini-batch.window.enabled=true
Use the exactly-once semantics.
blink.checkpoint.mode=EXACTLY_ONCE
Specify the checkpoint interval. Unit: milliseconds.
blink.checkpoint.interval.ms=180000
blink.checkpoint.timeout.ms=600000
Use Niagara as the state backend to configure time-to-live (TTL) for the state backen
d in Realtime Compute for Apache Flink V2.0 and later. The unit of TTL is milliseconds.

state.backend.type=niagara
state.backend.niagara.ttl.ms=129600000
In Realtime Compute for Apache Flink V2.0 and later, enable micro-batch processing th
at is performed at an interval of 5 seconds. You cannot configure this parameter when y
ou use a window function.
blink.microBatch.allowLatencyMs=5000
Specify the latency that is allowed for a job.
blink.miniBatch.allowLatencyMs=5000
Enable miniBatch for the node that joins two streams.
blink.miniBatch.join.enabled=true
Specify the size of a batch of data.
blink.miniBatch.size=20000
Enable local aggregation. By default, this feature is enabled in Realtime Compute for
Apache Flink V2.0 and later. If you use Realtime Compute for Apache Flink V1.6.4, you m
ust manually enable this feature.
blink.localAgg.enabled=true
Enable partial aggregation to improve efficiency when you run the CountDistinct funct
ion in Realtime Compute for Apache Flink V2.0 and later.
blink.partialAgg.enabled=true
Enable UNION ALL for optimization.
blink.forbid.unionall.as.breakpoint.in.subsection.optimization=true
Configure garbage collection for optimization. You cannot configure this parameter wh
en you use a Log Service source table.
blink.job.option=-yD heartbeat.timeout=180000 -yD env.java.opts='-verbose:gc -XX:NewRat
io=3 -XX:+PrintGCDetails -XX:+PrintGCDateStamps -XX:ParallelGCThreads=4'
Specify the time zone.
blink.job.timeZone=Asia/Shanghai

Resource parameters
To optimize resource configurations, perform the following steps:

1. Issue analysis

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De
velopment Guide

Blink

520 > Document Version: 20231114

i. In the following topology, the percentage of the input queues at Task Node 2 reaches
100%. The data at Task Node 2 is stacked up and causes backpressure on Task Node 1.
At Task Node 1, the percentage of the output queues has reached 100%.

ii. Click Task Node 2.
iii. In the Vertex Topology section of the Overview tab, click the SubTask List tab. Then,

find the subtask in which the value of In Queue is 100% .
iv. Click LOG 0 in the ID column in the row of the subtask.
v. On the Metrics Graph tab, view the CPU and memory usage.

2. Performance
i. On the right side of the job editing page, click the Configurations tab to view the details

about resource configurations.
ii. On the page that appears, change the parameter values of one or more operators in a

group.
To change the parameter values of one operator, perform the following steps:

a. In the GROUP box, click the plus sign (+) in the upper-right corner.
b. Move the pointer over the Operator box.

c. Click the icon next to the operator name.

d. In the Modify Operator Data dialog box, change the parameter values and click
OK.

To change the parameter values of multiple operators in a group at a time, perform the
following steps:

a. Move the pointer over the GROUP box.

b. Click the icon next to GROUP.

c. In the Modify Operator Data dialog box, change the parameter values based on
your business requirements and click OK.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De

velopment Guide

> Document Version: 20231114 521

iii. In the upper-right corner of the Configurations page, choose Configurations > Apply.
If the job performance is not significantly improved after you change the values of the
resource parameters for the group, perform the following steps to troubleshoot the
issue:

a. Check whether data skew exists on the operator.
b. Check whether subtasks of complex operators, such as GROUP BY, WINDOW, and

JOIN, are running as expected.
To remove an operator from a chain, perform the following steps:

a. Click the operator that you want to remove.
b. In the Modify Operator Data dialog box, set chainingStrategy to HEAD .

If the chainingStrategy parameter of this operator is set to HEAD , you must also
set the chainingStrategy parameter to HEAD for the next operator. The following
table describes the valid values of the chainingStrategy parameter.

Parameter Description

ALWAYS Operators are combined to increase the parallelism and
optimize job performance.

NEVER Operators are not combined with the upstream and
downstream operators.

HEAD Operators are combined with only the downstream
operators.

3. Rules and suggestions
We recommend that you set core:heap_memory to 1:4. This indicates that each CPU
core is assigned 4 GB of memory. Examples:

If the core parameter of operators is set to 1 and the heap_memory parameter of the
operator is set to 3, the system assigns 1 compute unit (CU) and 4 GB of memory to
the chain.
If the core parameter of operators is set to 1 and the heap_memory parameter of
operators is set to 5, the system assigns 1.25 CUs and 5 GB of memory to the chain.

Note
The total number of cores for an operator is calculated by using the following
formula: Value of the parallelism parameter × Value of the core
parameter.
The total heap_memory size for an operator is calculated by using the
following formula: Value of the parallelism parameter × Value of the
heap_memory parameter.
The core value for a chain is the maximum core value among the operators in
the group. The heap_memory size for a chain is the total heap_memory size of
all the operators in the chain.

parallelism

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De
velopment Guide

Blink

522 > Document Version: 20231114

Source node
The number of source nodes is a multiple of the number of upstream partitions. For
example, if the number of source nodes is 16, you must set the parallelism parameter
to a divisor of 16, such as 16, 8, or 4. The divisor must exclude 16.

Note The value of the parallelism parameter for the source nodes cannot
exceed the number of shards for the source nodes.

Operator node
Specify the parallelism parameter of the operator nodes based on the estimated
queries per second (QPS).

If the QPS is low, you can set the number of operator nodes to the value that is the
same as the parallelism of the source nodes.
If the QPS is high, make sure that the number of operator nodes is greater than the
parallelism of the source nodes. For example, if the parallelism is 16, set the number
of operator nodes to a value that is greater than 16, such as 64, 128, or 256.

Sink node
Set the parallelism parameter of the sink nodes to a value that is two to three times the
number of downstream partitions.

Note Do not set the parallelism parameter of the sink nodes to a value that
is greater than three times the number of downstream partitions. Otherwise, write
timeout or failures may occur. For example, if the number of sink nodes is 16, do
not set the parallelism parameter of these sink nodes to a value that is greater
than 48.

core
This parameter specifies the number of CPU cores. You can specify this parameter based
on the actual CPU utilization. The recommended value of this parameter is 0.25. The
default value is 0.1.
heap_memory
The heap memory size. Unit: MB. You can configure this parameter based on the actual
memory usage. The default value is 256.
state_size
You must set the state_size parameter to 1 for task nodes where the GROUP BY,
JOIN, OVER, or WINDOW operators are used. This way, the system assigns extra memory
for the operator to access state data. The default value of the state_size parameter is 0.

Note If you do not set state_size to 1 , the job may fail.

Apply new configurations
After you configure the parameters, we recommended that you suspend and then resume the
job, but not terminate and then start the job. This ensures that the configurations take effect.
The job status is cleared when the job is terminated. This may change execution results.

Note
You can suspend and then resume a job after you change the values of the
resource parameters, parameters in the WITH clause, or job parameters.
You can terminate and then start a job after you modify the SQL logic, change the
job version, add parameters to the WITH clause, or add job parameters.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De

velopment Guide

> Document Version: 20231114 523

After you restart or resume the job, you can click the Overview tab on the Administration
page and click the Vertex Topology tab to check whether the new configurations take
effect.

To suspend and resume a job, perform the following steps:
i. Publish a job. For more information, see Publish a job. Set Resource Configuration

Method to Use Latest Manually Configured Resources .
ii. On the Administration page, find the job that you want to suspend and click Suspend

in the Actions column.
iii. On the Administration page, find the job that you want to resume and click Resume in

the Actions column.
iv. In the Resume dialog box, click Latest Configuration.

To terminate and then start a job, perform the following steps:
i. Terminate a job.

a. Log on to the Realtime Compute development platform.
b. In the top navigation bar, click Administration.
c. On the Administration page, find the job that you want to terminate, and click

Terminate in the Actions column.
ii. Start the job.

a. Log on to the Realtime Compute development platform.
b. In the top navigation bar, click Administration.
c. On the Administration page, find the job that you want to start, and click Start in the

Actions column.
d. In the Start dialog box, specify Start Time for Reading Data .

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De
velopment Guide

Blink

524 > Document Version: 20231114

https://stream-ap-southeast-3.console.aliyun.com
https://stream-ap-southeast-3.console.aliyun.com

e. Click OK. The job is started.

Note Start Time for Reading Data specifies the time when Realtime Compute
for Apache Flink starts to read data from the source table.

If you select the current time, Realtime Compute for Apache Flink reads data
that is generated after the current time.
If you select a previous time, Realtime Compute for Apache Flink reads data
that is generated from the selected time. This is used to trace historical data.

Parameters
Global
isChainingEnabled specifies whether chaining is enabled. The default value is true. Use the
default value for this parameter.
Nodes

Parameter Description Allow modification

id The unique ID of the node. The node ID is
generated by the system. No

uid
The unique user identifier (UID) of the node. The
UID is used to generate the operator ID. If you
do not specify this parameter, the UID is the
same as the node ID.

No

pact The node type, such as data source, operator, or
data sink. No

name The name of the node. You can customize this
parameter. Yes

slotSharingGroup Specifies whether subtasks can share the same
slot. Use the default value for this parameter. No

chainingStrategy

Defines the operator chaining strategy. If an
operator is combined with an upstream
operator, they run in the same thread. They are
combined into an operator chain that has
multiple running steps. Valid values:

ALWAYS: Operators are combined to increase
the parallelism and optimize job performance.
NEVER: Operators are not combined with the
related upstream or downstream operators.
HEAD: Operators are combined with only the
downstream operators.

Yes

parallelism
The number of parallel jobs on the node. You
can increase the value based on your business
requirements. Default value: 1.

Yes

core
The number of CPU cores. You can specify this
parameter based on the actual CPU utilization.
Default value: 0.1. Recommended value: 0.25.

Yes

heap_memory
The heap memory size. You can specify this
parameter based on the memory size that
needs to be used. Default value: 256 MB.

Yes

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De

velopment Guide

> Document Version: 20231114 525

direct_memory The non-heap memory of a Java Virtual Machine
(JVM). Unit: MB. Default value: 0.

You can change the
value of this
parameter, but we
recommend that you
use the default value.

native_memory

The JVM non-heap memory that is used for the
Java Native Interface (JNI). Default value: 0. You
can set this parameter to 10 based on your
business requirements. This memory is mainly
used for state backends.

You can change the
value of this
parameter, but we
recommend that you
use the default value.

Chain
A Flink SQL task is a directed acyclic graph (DAG) that contains multiple nodes or
operators. Some upstream and downstream operators can be combined into a new
operator when the operators run in the same thread. This process is known as a chain. As a
result, the total number of CPU cores for the new operator is the maximum number of CPU
cores among all the operators in the chain. The memory size for the chain equals the total
memory size of all the operators in the chain. An operator chain can significantly reduce
data transmission costs.

Note
Only operators that have the same parallelism value can be combined to form a
chain.
You cannot add a GROUP BY operator to a chain.

Backpressure is an important concept in streaming shuffle. If the processing capability of
downstream storage systems is insufficient, Realtime Compute notifies upstream storage
systems to stop sending data to avoid data loss. In this scenario, backpressure occurs. This
topic describes typical backpressure scenarios and optimization ideas.

Backpressure detection mechanism
A job backpressure detection mechanism is provided in Realtime Compute versions later than
V3.0.0. With this mechanism, Realtime Compute detects congestion in the output network
buffer of a vertex to determine whether backpressure exists in the vertex. A vertex is a group
of operators associated as a chain. To check the backpressure for a job, follow these steps:

1. In the top navigation bar, click Administration.
i. Log on to the Realtime Compute development platform.
ii. In the top navigation bar, click Administration.
iii. On the Jobs page that appears, click the target job name under the Job Name field.

2. In the left-side navigation pane, click the running job for which you want to check the
backpressure. In the Vertex Topology section of the Overview tab that appears, click the
blue border of the vertex that you want to check for the job.

6.6.6. Typical backpressure scenarios and
optimization ideas

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De
velopment Guide

Blink

526 > Document Version: 20231114

https://stream-ap-southeast-3.console.aliyun.com

3. In the right-side pane, click the BackPressure tab and view the backpressure status in the
Status column.

If high with a red indicator is displayed, the vertex has backpressure.
If ok with a green indicator is displayed, the vertex does not have backpressure.

Backpressure scenarios and optimization ideas

Note In the following vertex topology diagrams, the vertex in green indicates that
no backpressure is detected, whereas the vertex in red indicates that backpressure is
detected.

Scenario 1: Only one vertex exists and no backpressure is detected.

Due to Flink features, no network buffer is configured on the output of the last vertex. In
this case, data is directly written into downstream storage systems. If a job has only one or
the last vertex, the backpressure detection fails. Therefore, this vertex topology diagram
does not indicate that no backpressure is detected in the job. To further determine if and
where backpressure exists, you must split the operators in Vertex 0. For more information
about how to split the operators, see Resource parameters.
Scenario 2: Multiple vertices exist and backpressure is detected on the second to
last vertex.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De

velopment Guide

> Document Version: 20231114 527

This vertex topology diagram shows that Vertex 1 has backpressure and Vertex 2 has a
performance bottleneck. You can check the operator names in Vertex 2 to determine the
actions that you can take.

If only write operations into downstream storage systems are involved, the backpressure
may be caused by the slow writing speed. We recommend that you increase the
parallelism for Vertex 2 or set the batchsize parameter for the result table. For more
information, see Upstream and downstream storage parameters.
If operations in addition to the write operation into downstream storage systems are
involved, you must split the operators that correspond to those operations for further
check. For more information about how to split the operators, see Resource parameters.

Scenario 3: Multiple vertices exist and backpressure is detected on a vertex
other than the second to last vertex.

This vertex topology diagram shows that Vertex 0 has backpressure and Vertex 1 has a
performance bottleneck. You can check the operator names in Vertex 1 to determine the
actions that you can take. The common operations and related optimization methods used
in this scenario are as follows:

GROUP BY operation: You can increase the parallelism or set the miniBatch parameter
to optimize the state operation. For more information, see Job parameters.
JOIN operation between dimension tables: You can increase the parallelism or set a cache
policy for dimension tables. For more information, see relevant dimension table
documents.
User-defined extension (UDX) operation: You can increase the parallelism or optimize the
related UDX code.

Scenario 4: Multiple vertices exist and no backpressure is detected on all the
vertices.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De
velopment Guide

Blink

528 > Document Version: 20231114

This vertex topology diagram shows that Vertex 0 has a potential performance bottleneck.
You can check the operator names in Vertex 0 to determine the actions that you can take.

If only read operations from the source table are involved, the slow reading speed causes
high latency. However, Realtime Compute does not have performance bottlenecks. In this
case, you can increase the parallelism of the source operator or set the batchsize
parameter for reading the source data. For more information, see Upstream and
downstream storage parameters.

Note The parallelism of the source operator cannot be greater than the
number of shards of the upstream storage systems.

If operations in addition to the read operation from the source table are involved, we
recommend that you split the operators involved in other operations first. For more
information about how to split operators, see Resource parameters.

Scenario 5: Backpressure is detected on a vertex but no backpressure is
detected on its subsequent parallel vertices.

This vertex topology diagram shows that Vertex 0 has backpressure but whether Vertex 1
or Vertex 2 has a performance bottleneck cannot be determined. You can preliminarily
determine the vertex where a performance bottleneck exists based on the IN_Q metric of
Vertex 1 and Vertex 2. The vertex whose IN_Q remains 100% for a long period of time may
have a performance bottleneck. To further determine where the performance bottleneck
exists, you must split the operators of the vertex. For more information about how to split
operators, see Resource parameters.

6.6.7. SQL Tuning Advisor

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De

velopment Guide

> Document Version: 20231114 529

If you use the Cache All policy to join a super-large dimension table with another table,
processes may fail to load full data of the dimension table into the cache. In this case, you
can use the Partitioned All Cache policy to optimize the loading performance.

Background information
When you join a dimension table with another table, you can set the cache parameter to ALL
to use the Cache All policy. This policy requires that all processes load full data of the
dimension table to the cache. The memory size configured for the join node must be at least
twice that of the dimension table.
If the dimension table is large, the join node consumes a large amount of memory. This also
increases the garbage collection overhead. If the size of a dimension table exceeds 1 TB, only
partial data of the table can be loaded to the memory. Optimization by using Partitioned All
Cache is introduced to resolve this issue. If Partitioned All Cache is enabled, input data is
shuffled based on join keys, and each process needs to load only the required data of the
dimension table to the cache.
You can set partitionedJoin to true to enable Partitioned All Cache. This reduces memory
consumption. However, input data shuffling based on join keys causes additional network and
CPU overheads. We recommend that you do not enable Partitioned All Cache in the following
scenarios:

Input data is severely skewed on the join keys. If you use Partitioned All Cache in this
scenario, data skew slows down the running of some nodes.
The size of the dimension table is small. For example, the size of the dimension table is less
than 2 GB. If you enable Partitioned All Cache in this scenario, the memory consumption is
slightly reduced, whereas high network and CPU overheads are generated.

Optimization method
Add partitionedJoin = 'true' to the WITH clause of the DDL statement of the dimension
table.

Sample code
 CREATE TABLE white_list (
 id varchar,
 name varchar,
 age int,
 PRIMARY KEY (id),
 PERIOD FOR SYSTEM_TIME -- The identifier of a dimension table.
) with (
 type = 'odps',
 endPoint = 'your_end_point_name',
 project = 'your_project_name',
 tableName = 'your_table_name',
 accessId = 'your_access_id',
 accessKey = 'your_access_key',
 `partition` = 'ds=20180905',
 cache = 'ALL',
 partitionedJoin = 'true' -- Enable Partitioned All Cache.
);

6.6.7.1. Partitioned All Cache

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De
velopment Guide

Blink

530 > Document Version: 20231114

You can increase the throughput by enabling miniBatch or microBatch.

Background information
Both miniBatch and microBatch are used for micro-batch processing. If you enable miniBatch
or microBatch, data processing is triggered when the data in the cache reaches a specified
threshold. This reduces the frequency at which Realtime Compute for Apache Flink accesses
the state data. This way, the throughput is increased and data output is reduced. However,
the two methods have different triggering mechanisms:

miniBatch triggers micro-batch processing by using the timer threads that are registered
with each task. This requires some thread scheduling overheads.
microBatch triggers micro-batch processing by using event messages, which are inserted
into the data sources at a specified interval. microBatch is an enhancement of miniBatch.
microBatch has higher data serialization efficiency, higher throughput, lower backpressure,
and lower latency than miniBatch.

We recommend that you enable micro-batch processing in most scenarios, such as data
aggregation, to improve system performance. We recommend that you do not enable micro-
batch processing in the following scenarios:

Low latency is required. Micro-batch processing achieves high throughput at the expense of
latency.
The aggregation degree of GroupAggregate is low (O/I > 0.8). In such scenarios, almost no
data is aggregated in a batch.

Optimization method
On the Parameters tab of the Development page, set
blink.microBatch.allowLatencyMs or blink.miniBatch.allowLatencyMs. The two
parameters have the same effect. The unit of them is millisecond.

Note If you set both parameters for a job, we recommend that you set them to the
same value. If they are set to different values, the second one in the code takes effect.

Sample code
Enable microBatch.

blink.microBatch.allowLatencyMs=5000

Enable miniBatch.

blink.miniBatch.size=20000

Enable microBatch and miniBatch at the same time.

The maximum number of data records that can be cached in each batch. You must set t
his parameter to avoid out of memory (OOM).
blink.miniBatch.size=20000
blink.microBatch.allowLatencyMs=5000
blink.miniBatch.allowLatencyMs=6000--- This configuration takes effect.

6.6.7.2. miniBatch and microBatch

6.6.7.3. Cache policy

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De

velopment Guide

> Document Version: 20231114 531

When you join two dimension tables, you can configure a cache policy to improve the job
throughput.

Background information
In Realtime Compute for Apache Flink, you can set the cache parameter to specify a cache
policy:

If the cache parameter is set to LRU, some data in the dimension table is cached. The
system creates a local LRU cache for each join node. Realtime Compute for Apache Flink
searches for data in the cache each time it reads a data record in the source table. The
data that meets the requirement is returned. This reduces I/O requests. If no data in the
cache meets the requirement, Realtime Compute for Apache Flink searches the dimension
table. The data that meets the requirement is stored in the cache for subsequent queries.
To limit the volume of data that can be stored in the cache, you can set cacheSize. To
regularly update the data of a dimension table, you can set cacheTTLMs to adjust the
cache expiration time. cacheTTLMs takes effect for all cached data records. If a cached
data record is not accessed within the specified period of time, it is removed from the
cache.
If the cache parameter is set to All, all data in the dimension table is cached. The system
creates an asynchronous thread for the join node to synchronize data between the cache
and dimension table. The input data is blocked from the moment a job is started to the
moment loading data to the cache is completed. This ensures that the data in the
dimension table is loaded to the cache before input data processing starts.
Realtime Compute for Apache Flink searches the cache in subsequent dimension table
queries. If the data that meet the requirement cannot be found in the cache, the join key
does not exist. If data in the cache expires, Realtime Compute for Apache Flink reloads the
data in the dimension table to the cache. The reloading process does not affect the join
operation of dimension tables. The reloaded data is stored in the temporary memory. The
atomic substitution operation is performed after all data in the dimension table is reloaded.
If cache is set to ALL, the join operation of dimension tables can achieve excellent
performance because few I/O requests are initiated. However, the memory must be large
enough to store the data of two dimension tables.

Note Do not specify the cache policy if data in the cache is not allowed for each
dimension table query.

Optimization method
Add cache='LRU' or cache='ALL' to the WITH clause in the DDL statement of the dimension
table. The following table describes the parameters related to the cache policy.

Parameter Description Require
d Remarks

cache The cache policy. No

None: indicates that data is not cached. This
is the default value.
LRU: If you set this parameter to LRU, you
must configure cacheSize, cacheTTLMs, and
partitionedJoin.
ALL: If you set this parameter to ALL, you
must configure cacheTTLMs,
cacheReloadTimeBlackList, and
partitionedJoin.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De
velopment Guide

Blink

532 > Document Version: 20231114

cacheSize The cache size.
Unit: rows. No

You can set this parameter only after you set
the cache parameter to LRU. Default value:
10000.

cacheTTLMs

The cache
expiration period
or the cache
reloading
interval. Unit:
milliseconds.

No

If you set the cache parameter to LRU, this
parameter specifies the cache expiration
period. The cache does not expire by default.
If you set the cache parameter to ALL, this
parameter specifies the cache reloading
interval. The cache is not reloaded by default.

cacheReloadTi
meBlackList

The periods
during which
cache reloading
is not allowed.
This parameter
takes effect if
the cache
parameter is set
to ALL. During
the periods
specified by this
parameter, the
cache is not
reloaded (for
example, in
Double 11).

No

Optional. This parameter is empty by default.
Example: '2017-10-24 14:00 -> 2017-10-24
15:00, 2017-11-10 23:30 -> 2017-11-11
08:00'.

Separate multiple periods with commas (,).
Separate the start time and end time of each
period with a hyphen and a greater-than sign
(->).

partitionedJoin

Specifies
whether to
enable
Partitioned All
Cache.

No

By default, this parameter is set to false, which
indicates that Partitioned All Cache is disabled.
If Partitioned All Cache is enabled, data is
shuffled before the source table is associated
with the dimension table based on join keys.

If the cache parameter is set to LRU, the
cache hit rate increases.
If the cache parameter is set to ALL, memory
consumption is reduced because only the
required data is cached for each concurrent
job.

Sample code
 CREATE TABLE white_list (
 id varchar,
 name varchar,
 age int,
 PRIMARY KEY (id)
) with (
 type = 'odps',
 endPoint = 'your_end_point_name',
 project = 'your_project_name',
 tableName = 'your_table_name',
 accessId = 'your_access_id',
 accessKey = 'your_access_key',
 `partition` = 'ds=20180905',
 cache = 'ALL'
);

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De

velopment Guide

> Document Version: 20231114 533

You can enable the asynchronous mode and configure related parameters to improve
throughput when you join dimension tables.

Background information
By default, the synchronous mode is used when you join dimension tables. The system
queries the physical table and returns the association result each time a data record is added
to the physical table. This results in low throughput and high latency. The asynchronous
mode is introduced to process query requests in parallel, so that consecutive requests do not
need to wait for processing.
Flink SQL implements asynchronous JOIN operations for dimension tables based on Flink
Async I/O and asynchronous clients. This significantly improves throughput.

Optimization method
Add async='true' to the WITH clause in the data definition language (DDL) statement of a
dimension table. The following table describes the parameters related to the asynchronous
mode.

Parameter Description Required Remarks

async
Specifies whether to
enable the asynchronous
mode.

No Default value: false.

asyncResultOrder Specifies whether to sort
asynchronous results. No

Valid values:
unordered (default
value)
ordered

asyncTimeoutMs
The timeout period of an
asynchronous request, in
milliseconds.

No Default value: 180000.

asyncCapacity
The maximum number of
asynchronous requests in
an asynchronous request
queue.

No Default value: 100.

asyncCallbackThreads The number of callback
threads. No

An asynchronous request
is implemented by a
thread. onComplete is
called if an asynchronous
request succeeds and
onError is called if it fails.
The number of times
onComplete and onError is
called determines the size
of the thread pool. Default
value: 50.

6.6.7.4. Asynchronous mode

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De
velopment Guide

Blink

534 > Document Version: 20231114

asyncConnectionQueue
Maxsize

The maximum number of
requests that can be sent. No

If the number of requests
waiting for a server to
process reaches the value
specified by this
parameter, asynchronous
request calling is blocked
to prevent out of memory
of the client. Default
value: 100.

asyncCallbackQueueMa
xsize

The maximum number of
requests in a callback
processing queue.

No

If the number of requests
waiting for callback
processing reaches the
value specified by this
parameter, asynchronous
request calling is blocked
to prevent out of memory
of the client. Default
value: 500.

Sample code
CREATE TABLE dim_cn_item(
 rowkey VARCHAR,
 item_id VARCHAR,
 title VARCHAR,
 cate_id VARCHAR,
 cate_name VARCHAR,
 cate_level1_id VARCHAR,
 cate_level2_id VARCHAR,
 cate_level3_id VARCHAR,
 cate_level1_name VARCHAR,
 cate_level2_name VARCHAR,
 cate_level3_name VARCHAR,
 pinlei_id VARCHAR,
 pinlei_name VARCHAR,
 bu_id VARCHAR,
 bu_name VARCHAR,
 PRIMARY KEY(rowkey)
) WITH(
 type='alihbase',
 diamondKey = 'xxxx',
 diamondGroup ='yyyy',
 cacheTTLMs='3600000',
 async='true',
 cache='LRU',
 columnFamily='cf',
 cacheSize='1000',
 tableName='yourTableName'
);

FAQ
Error information

Caused by: org.apache.flink.table.api.TableException: Output mode can not be UNORDERE
D if the input is an update stream.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De

velopment Guide

> Document Version: 20231114 535

D if the input is an update stream.
at
org.apache.flink.table.plan.util.TemporalJoinUtil$.validate(TemporalJoinUtil.scala:340)

at
org.apache.flink.table.plan.nodes.common.CommonTemporalTableJoin.translateToPlanInternal(
CommonTemporalTableJoin.scala:144)
at
org.apache.flink.table.plan.nodes.physical.stream.StreamExecTemporalTableJoin.translateTo
PlanInternal(StreamExecTemporalTableJoin.scala:98)
at
org.apache.flink.table.plan.nodes.physical.stream.StreamExecTemporalTableJoin.translateTo
PlanInternal(StreamExecTemporalTableJoin.scala:39)
at
org.apache.flink.table.plan.nodes.exec.ExecNode$class.translateToPlan(ExecNode.scala:58)

at
org.apache.flink.table.plan.nodes.physical.stream.StreamExecTemporalTableJoin.org$apache$
flink$table$plan$nodes$exec$StreamExecNode$$super$translateToPlan(StreamExecTemporalTable
Join.scala:39)
at
org.apache.flink.table.plan.nodes.exec.StreamExecNode$class.translateToPlan(StreamExecNod
e.scala:38)
at
org.apache.flink.table.plan.nodes.physical.stream.StreamExecTemporalTableJoin.translateTo
Plan(StreamExecTemporalTableJoin.scala:39)
at
org.apache.flink.table.plan.nodes.physical.stream.StreamExecTemporalTableJoin.translateTo
Plan(StreamExecTemporalTableJoin.scala:39)
at
org.apache.flink.table.plan.nodes.physical.stream.StreamExecCalc.translateToPlanInternal(
StreamExecCalc.scala:89)
at
org.apache.flink.table.plan.nodes.physical.stream.StreamExecCalc.translateToPlanInternal(
StreamExecCalc.scala:43)
at
org.apache.flink.table.plan.nodes.exec.ExecNode$class.translateToPlan(ExecNode.scala:58)

at
org.apache.flink.table.plan.nodes.physical.stream.StreamExecCalc.org$apache$flink$table$p
lan$nodes$exec$StreamExecNode$$super$translateToPlan(StreamExecCalc.scala:43)
at
org.apache.flink.table.plan.nodes.exec.StreamExecNode$class.translateToPlan(StreamExecNod
e.scala:38)
at
org.apache.flink.table.plan.nodes.physical.stream.StreamExecCalc.translateToPlan(StreamEx
ecCalc.scala:43)
at
org.apache.flink.table.plan.nodes.physical.stream.StreamExecSink.translate(StreamExecSink
.scala:158)
at
org.apache.flink.table.plan.nodes.physical.stream.StreamExecSink.translateToPlanInternal(
StreamExecSink.scala:103)
at
org.apache.flink.table.plan.nodes.physical.stream.StreamExecSink.translateToPlanInternal(

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De
velopment Guide

Blink

536 > Document Version: 20231114

StreamExecSink.scala:53)
at
org.apache.flink.table.plan.nodes.exec.ExecNode$class.translateToPlan(ExecNode.scala:58)

at

Cause
If the upstream data is Update Stream, the asyncResultOrder parameter is set to unordered
when you join dimension tables.

Note Update Stream can be the TopN operation or the JOIN operation on two
data streams.

Solution
Set the asyncResultOrder parameter to ordered in the WITH clause for the dimension
table.

You can optimize your job performance by using the APPROX_COUNT_DISTINCT function.
Compared with COUNT(DISTINCT), this function returns an approximate count.

Background information
When the COUNT(DISTINCT) function is used, distinct key information is saved in state data of
the aggregate node. If a large number of distinct keys exist, the read/write overhead of state
data is large. This causes a bottleneck in job performance optimization. In many cases,
accurate computation is not necessary. If you are willing to achieve high job performance at
the expense of accuracy, you can use the APPROX_COUNT_DISTINCT function.
APPROX_COUNT_DISTINCT supports miniBatch and local-global optimization on the
aggregate node. When you use this function, make sure that the following requirements are
met:

The input data does not contain retracted messages.
A large number of distinct keys, such as unique visits (UVs), exist. The
APPROX_COUNT_DISTINCT function cannot bring obvious benefits if only a small number
of distinct keys exist.

Optimization method
Use APPROX_COUNT_DISTINCT(user) to replace COUNT(DISTINCT user) in the SQL. The
syntax of APPROX_COUNT_DISTINCT(user) is:
APPROX_COUNT_DISTINCT(col [, accuracy])

where:
col indicates the name of a field, which can be of any type.
accuracy specifies the calculation accuracy. A larger value indicates higher accuracy, higher
state overhead, and lower performance. This field is optional. Valid values: (0.0, 1.0).
Default value: 0.99.

Sample code
Test data

a (VARCHAR) c (BIGINT)

6.6.7.5. APPROX_COUNT_DISTINCT

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De

velopment Guide

> Document Version: 20231114 537

Hi 1

Hi 2

Hi 3

Hi 4

Hi 5

Hi 6

Test statement

SELECT
 a,
 APPROX_COUNT_DISTINCT(b) as b,
 APPROX_COUNT_DISTINCT(b, 0.9) as c
FROM MyTable
GROUP BY a;

Test results

a (VARCHAR) b (BIGINT) c (BIGINT)

Hi 5 5

You can use local-global optimization to resolve data skew issues of an aggregate node.

Background information
When you use local-global optimization, the aggregation process is divided into two phases:
local aggregation and global aggregation. They are similar to the combine and reduce phases
in MapReduce. In the local aggregation phase, the system aggregates data that is locally
buffered at the input node into batches and generates an accumulator for each batch of data.
In the global aggregation phase, the system merges the accumulators to obtain the global
aggregation result.
Local-global optimization can eliminate data skews by using local aggregation and resolve the
data hotspot issues in global aggregation. This improves job performance. You can use local-
global optimization to improve the performance of common aggregate functions, such as
SUM, COUNT, MAX, MIN, and AVG. You can also use it to resolve data hotspot issues that
occur when you use these functions.

Optimization method
A user-defined aggregate function (UDAF) must execute the merge method to trigger local-
global optimization. For more information about how to execute the merge method, see
Sample code.

Note In Blink 2.0 and later versions, local-global optimization is enabled by default.
If you want to disable local-global optimization, set blink.localAgg.enabled to false in
job parameters.

Sample code

6.6.7.6. Local-global optimization

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De
velopment Guide

Blink

538 > Document Version: 20231114

import org.apache.flink.table.functions.AggregateFunction;

public class CountUdaf extends AggregateFunction<Long, CountUdaf.CountAccum> {
 // Define the data structure of the accumulator that stores state data of the COUNT
UDAF.
 public static class CountAccum {
 public long total;
 }

 // Initialize the accumulator of the COUNT UDAF.
 public CountAccum createAccumulator() {
 CountAccum acc = new CountAccum();
 acc.total = 0;
 return acc;
 }

 // The getValue method is used to compute the result of the COUNT UDAF based on the
accumulator that stores state data.
 public Long getValue(CountAccum accumulator) {
 return accumulator.total;
 }

 // The accumulate method is used to update the accumulator that is used by the COUN
T UDAF to store state data based on input data.
 public void accumulate(CountAccum accumulator, Object iValue) {
 accumulator.total++;
 }

 public void merge(CountAccum accumulator, Iterable<CountAccum> its) {
 for (CountAccum other : its) {
 accumulator.total += other.total;
 }
 }
}

You can use the ROW_NUMBER OVER WINDOW function to efficiently deduplicate source data.

Background information
Deduplication aims to obtain top N records. Realtime Compute for Apache Flink supports two
deduplication policies:

Deduplicate Keep FirstRow: retains only the first record under a key. The state data
contains only the key information, so the node performance is high after you enable
deduplication by using ROW_NUMBER OVER WINDOW.
Deduplicate Keep LastRow: retains only the last record under a key. This policy slightly
outperforms the LAST_VALUE function.

Optimization method
SQL does not have deduplication syntax. Realtime Compute for Apache Flink uses the
ROW_NUMBER OVER WINDOW function to deduplicate data.

6.6.7.7. ROW_NUMBER OVER WINDOW

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De

velopment Guide

> Document Version: 20231114 539

SELECT *
FROM (
 SELECT *,
 ROW_NUMBER() OVER ([PARTITION BY col1[, col2..]
 ORDER BY timeAttributeCol [asc|desc]) AS rownum
 FROM table_name)
WHERE rownum = 1;

Parameter Description

ROW_NUMBER()
Calculates the row number. It is a window
function that contains an OVER clause. The value
starts from 1.

PARTITION BY col1[, col2..] Optional. Specifies partition columns for storing
primary keys of duplicate records.

ORDER BY timeAttributeCol [asc|desc])

Specifies the column by which you want to sort
data. You must specify a time attribute, which
can be proctime or rowtime. You must also
specify the sort order, which can be asc
(Deduplicate Keep FirstRow) or desc (Deduplicate
Keep LastRow).

Note
If you do not specify the time
attribute, proctime is used by default.
If you do not specify the sort order,
asc is used by default.

rownum The current row number. Only rownum=1 and
rownum<=1 are supported.

When the ROW_NUMBER OVER WINDOW function is executed, two levels of queries are
performed:

1. The ROW_NUMBER() function is used to sort data records under a key by the time
attribute and mark the records with their rankings.

Note
If the time attribute is proctime, Realtime Compute for Apache Flink removes
duplicate records based on the time when the records are processed by Realtime
Compute for Apache Flink. In this case, the rankings may vary each time.
If the time attribute is rowtime, Realtime Compute for Apache Flink removes
duplicate records based on the time when the records are written to Realtime
Compute for Apache Flink. In this case, the rankings remain unchanged.

2. The data records are sorted by their rankings and only the first or last one is retained.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De
velopment Guide

Blink

540 > Document Version: 20231114

Sample code
Deduplicate Keep FirstRow
In this example, Realtime Compute for Apache Flink removes duplicate data records in
table T based on field b, and retains the first data record that is processed by Realtime
Compute for Apache Flink.

SELECT *
FROM (
 SELECT *,
 ROW_NUMBER() OVER (PARTITION BY b ORDER BY proctime) as rowNum
 FROM T
)
WHERE rowNum = 1;

Deduplicate Keep LastRow
In this example, Realtime Compute for Apache Flink removes duplicate data records in
table T based on the b and d fields, and retains the last record that is written to Realtime
Compute for Apache Flink.

SELECT *
FROM (
 SELECT *,
 ROW_NUMBER() OVER (PARTITION BY b, d ORDER BY rowtime DESC) as rowNum
 FROM T
)
WHERE rowNum = 1;

You can resolve COUNT(DISTINCT) hotspot issues by using partial-final optimization.

Background information
To resolve the COUNT(DISTINCT) hotspot issues, you can change the aggregation process to
two-layer aggregation by adding a scattered layer at which data is scattered based on the
distinct keys. This is referred to as partial-final optimization. Blink 2.2.0 and later versions
support partial-final optimization. Partial-final optimization is suitable for the following
scenarios:

The COUNT(DISTINCT) function has been used but the performance requirement of an
aggregate node is not met.
The aggregate node where the COUNT(DISTINCT) function is executed does not have user-
defined aggregate functions (UDAFs).

Note Partial-final optimization divides the aggregation process into two layers,
which causes additional network shuffling. Therefore, resources are wasted if the data
amount is small.

Optimization method
On the Parameters tab of the Development page, set blink.partialAgg.enabled to true.
After partial-final optimization is enabled, check whether an expand node is included in the
topology or whether the aggregation process has two layers.

Sample code

6.6.7.8. Partial-final optimization

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De

velopment Guide

> Document Version: 20231114 541

blink.partialAgg.enabled=true

This topic describes the monitoring and alerting process in Realtime Compute for Apache
Flink and how to create alert rules in Realtime Compute for Apache Flink.

Introduction to CloudMonitor
CloudMonitor helps you collect the monitoring metrics of cloud resources or other custom
monitoring metrics, check service availability, and configure alerts based on these monitoring
metrics. CloudMonitor helps you view the cloud resource usage, business information, and
service health status. In addition, you can receive alerts and respond to these alerts at the
earliest opportunity to keep your applications running properly.

Create alert rules
For more information about how to create an alert rule, see Cloud service monitoring.

Monitoring items of Realtime Compute for Apache Flink

Monitoring item Unit Metric Dimensions Statistics

Service delay s inputDelay
userId,
regionId,
projectName,
and jobName

Average

Read records per second (RPS) RPS ParserTpsRat
e

userId,
regionId,
projectName,
and jobName

Average

Write RPS RPS SinkOutTpsRa
te

userId,
regionId,
projectName,
and jobName

Average

Failover rate

Note
The failover rate is the
average number of
failovers per second in the
last minute. For example, if
one failover occurred in the
last minute, the failover
rate is 0.01667 (1/60 =
0.01667).

% TaskFailoverR
ate

userId,
regionId,
projectName,
and jobName

Average

6.7. Monitoring and alerting

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De
velopment Guide

Blink

542 > Document Version: 20231114

https://www.alibabacloud.com/help/en/cms/user-guide/cloud-service-monitoring

Processing delay s FetchedDelay
userId,
regionId,
projectName,
and jobName

Average

View monitoring metrics
1. Log on to the Realtime Compute development platform.
2. In the top navigation bar, click Administration.
3. On the Administration page, click the name of the job for which you want to view

monitoring metrics.
4. In the upper-right corner of the page, choose More > Monitor.
5. On the page that appears, view the monitoring metrics of the job.

You can configure the parameters of a Realtime Compute for Apache Flink job to customize
the log download levels and download paths.

Important Only Realtime Compute for Apache Flink V3.2 and later allows you to
customize the log levels and paths.

Procedure
1. Log on to the Realtime Compute development platform.
2. In the top navigation bar, click Development.
3. In the Development section of the left-side navigation pane, double-click the folder that

stores the required job and find the job.
4. Double-click the job to go to the job editing page.
5. On the right side of the job editing page, click the Parameters tab. In the pane that

appears, enter the configuration data of Log4j.

Log4j configuration
parameter Description

6.8. Customize log levels and
download paths

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De

velopment Guide

> Document Version: 20231114 543

https://stream-ap-southeast-3.console.aliyun.com
https://stream-ap-southeast-3.console.aliyun.com

Root logger

Processes some operations for logging. The syntax of the root
logger is log4j.rootLogger = [level] , appenderName,
appenderName, … . The syntax indicates that the log records
whose level is at least the specified level are delivered to one or
more destinations. The following items describe the parameters
in the syntax:

level: specifies the level of logs. The levels of logs include
ERROR, WARN, INFO, and DEBUG that are sorted in descending
order. ERROR indicates serious errors for the job. WARN
indicates potentially harmful situations for the job. INFO
indicates informational messages for the job. DEBUG indicates
the debugging information about the job.
appenderName: specifies the name of the destination to
which log records are delivered. You can specify multiple
appenders for the root logger.

Appender

Specifies the destination to which log records are delivered. To
define an appender, use the following syntax:

log4j.appender.appenderName =
fully.qualified.name.of.appender.class
log4j.appender.appenderName.option1 = value1
...
log4j.appender.appenderName.optionN = valueN

Appenders have the following two types:
Appenders provided by Log4j

 org.apache.log4j.ConsoleAppender : delivers log
records to a console.
 org.apache.log4j.FileAppender : delivers log records

to a file.
 org.apache.log4j.DailyRollingFileAppender :

generates a log file every day.
 org.apache.log4j.RollingFileAppender : generates a

new file when a file reaches its maximum size.
 org.apache.log4j.WriterAppender : delivers log

records in the stream format to a specified destination.

Custom appenders
Custom appenders allow you to deliver log records to only the
Log Service and Object Storage Service (OSS) services. The
classes of the two services are fixed. The following example
lists the fixed classes.

Log Service:
 log4j.appender.loghub=com.alibaba.blink.log.loghub.B
linkLogHubAppender
OSS:
 log4j.appender.oss=com.alibaba.blink.log.oss.BlinkOs
sAppender

You can also specify other configuration items that are
supported by the Log4j syntax.

For more information, see Change the log level to DEBUG and
deliver log records to an OSS bucket..

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De
velopment Guide

Blink

544 > Document Version: 20231114

Note After you specify the job parameters, restart the job. You can view the new
logs in the OSS bucket.

6. Terminate the job. For more information, see Terminate a job.
7. Start the job. For more information, see Start a job.

Considerations
The OSS path must be the same as that for the Realtime Compute for Apache Flink cluster
that is deployed in exclusive mode.
The logs that you can download are provided through Log4j. system.out logs are not
included in these logs.
The specified Log Service or OSS can interact with the cluster where the job resides.
The job can be started in most cases even if the custom log output configuration is invalid.
However, the logs of the job cannot be displayed based on the configuration.

Change the log level to DEBUG and deliver log records to an
OSS bucket.

Important If you specify the log4j.rootLogger parameter, you may fail to view
log information or troubleshoot related issues on the Realtime Compute for Apache Flink
development platform. Use this parameter with caution.

#Change the log level to DEBUG and export logs to a specific file in an OSS bucket.
log4j.rootLogger=DEBUG, file, oss

#This parameter setting is fixed. You do not need to change the setting. Configure the
appender class for OSS.
log4j.appender.oss=com.alibaba.blink.log.oss.BlinkOssAppender

#The endpoint.
log4j.appender.oss.endpoint=oss-cn-hangzhou****.aliyuncs.com

#The AccessKey ID.
log4j.appender.oss.accessId=U****4ZF

#The AccessKey secret.
log4j.appender.oss.accessKey=hsf****DeLw

#The OSS bucket name.
log4j.appender.oss.bucket=et****

#The subdirectory that is used to store logs.
log4j.appender.oss.subdir=/luk****/test/

Disable the output of the logs for a specified package, and
deliver logs to a specified Logstore of Log Service.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De

velopment Guide

> Document Version: 20231114 545

#Disable the output of the logs for the log4j.logger.org.apache.hadoop package.
log4j.logger.org.apache.hadoop = OFF

#This parameter setting is fixed. You do not need to change the setting. Configure the
LogHub appender.
log4j.appender.loghub = com.alibaba.blink.log.loghub.BlinkLogHubAppender

#Deliver only logs of the ERROR level to Log Service.
log4j.appender.loghub.Threshold = ERROR

#The name of a project in Log Service.
log4j.appender.loghub.projectName = blink-errdumpsls-test

#The name of a Logstore in Log Service.
log4j.appender.loghub.logstore = logstore-3

#The endpoint of Log Service.
log4j.appender.loghub.endpoint = http://cn-shanghai****.sls.aliyuncs.com

#The AccessKey ID.
log4j.appender.loghub.accessKeyId = Tq****WR

#The AccessKey secret.
log4j.appender.loghub.accessKey = MJ****nfVx

Change the log level to WARN, and disable the output of the
logs for a specified package.
#Change the log level to WARN.
log4j.rootLogger=WARN,file

#Disable the output of the logs for the log4j.logger.org.apache.hadoop package.
log4j.logger.org.apache.hadoop = OFF

Realtime Compute for Apache Flink provides the version management feature for you to
manage Blink versions of a Realtime Compute for Apache Flink cluster in exclusive mode.

Install a version
1. Go to the Version Management page

i. Log on to the Realtime Compute development platform.

6.9. Manage Blink versions of a
Realtime Compute for Apache
Flink cluster deployed in exclusive
mode

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De
velopment Guide

Blink

546 > Document Version: 20231114

https://stream-ap-southeast-3.console.aliyun.com

ii. Move the pointer over the username in the top navigation bar and click Project
Management.

iii. In the left-side navigation pane, choose Cluster Management > Clusters.
iv. On the Clusters page, find the cluster for which you want to manage Blink versions. In

the Actions column, choose More > Version Management.
2. On the Installable Version tab, find the version you want to install, and click Install in the

Actions column.
On the Installable Version tab, choose a proper version based on your business
requirements and the version features.

Tag Description

stable The recommended stable Blink version.

beta

The beta version programmed for testing.

Note We recommend that you install a beta version
in only specified scenarios. The performance and the stability
of the beta version cannot be ensured in other scenarios.

No tag The historical stable version.

Note
You can install one version at a time. During installation, the cluster status is
Version Installing.
You cannot install a version that has been installed.
Each version is configured with a service period. The default service period is one
year. After the service period expires, you can continue to use the version, but
Alibaba Cloud no longer maintains the version.

Switch a version
Blink features vary based on Blink versions. You can configure a Blink version based on your
business requirements. You can switch the Blink version for a job.

1. Log on to the Realtime Compute development platform.
2. In the top navigation bar, click Development.
3. On the Development page, double-click the job in a folder that stores the job to go to the

job editing page.
4. In the right side of the job editing page, click Version Information.
5. From the version list, select the Blink version you want to switch to.

Uninstall a Blink version
Realtime Compute for Apache Flink allows you to install only three Blink versions. If you
already install three Blink versions and need to install a new version, you must uninstall an
existing version.

1. Go to the Version Management page
i. Log on to the Realtime Compute development platform.
ii. Move the pointer over the username in the top navigation bar and click Project

Management.
iii. In the left-side navigation pane, choose Cluster Management > Clusters.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De

velopment Guide

> Document Version: 20231114 547

https://stream-ap-southeast-3.console.aliyun.com
https://stream-ap-southeast-3.console.aliyun.com

iv. On the Clusters page, find the cluster for which you want to uninstall a version. In the
Actions column, choose More > Version Management.

2. On the Installed Versions tab, find the version, and click Uninstall in the Actions
column.

Note
You cannot uninstall a Blink version that is set to current.
You cannot uninstall a Blink version that is referenced by a Realtime Compute for
Apache Flink job.

Specify the current version
You can select an installed Blink version and set the version to the current version of a job in
the current cluster. Blink features vary based on Blink versions. You can set a Blink version to
the current version of a Realtime Compute for Apache Flink cluster based on your business
requirements.

1. Go to the Version Management page
i. Log on to the Realtime Compute development platform.
ii. Move the pointer over the username in the top navigation bar and click Project

Management.
iii. In the left-side navigation pane, choose Cluster Management > Clusters.
iv. On the Clusters page, find the cluster for which you want to set a version to the current

version. In the Actions column, and choose More > Version Management.
2. On the Installed Version page, find the version that you want to set to the current

version, and click Set to current in the Actions column.

FAQ
What can I do if the blink-<version> already installed error message appears during
installation?
The error message is returned because the Blink version has been installed. You do not
need to install the version again.
What can I do if the Flink versions exceeded max limitation:3 error message appears
during installation?
The error message is returned because the number of versions exceeds the upper limit. To
install a new version, you must delete existing versions until the number of installed
versions is less than three.
What can I do if the Node:<nodeName> in project:<projectName> still ref the version:
<blinkVersion> error message appears during uninstallation?
The error message is returned because the Blink version is referenced by an online job. You
must bring the job offline based on the job name and project name provided in the error
message.
What can I do if the following message appears when I click Syntax Check or Publish?

code:[30006], brief info:[blink script not exist, please check blink version], contex
t info:[blink script:[/home/admin/blink/blink-2.2.6-hotfix0/bin/flink], blink
version:[/home/admin/blink/blink-2.2.6-hotfix0/bin/flink]]

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De
velopment Guide

Blink

548 > Document Version: 20231114

https://stream-ap-southeast-3.console.aliyun.com

The error message is returned because the Blink version used by the job does not exist. In
the Realtime Compute for Apache Flink console, choose Version Management >
Installed Versions to check whether the version exists,If the version does not exist,
switch to another version or install the version.

6.10. Monitoring and alerting

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink SQL De

velopment Guide

> Document Version: 20231114 549

Alibaba Cloud Realtime Compute for Apache Flink allows you to develop, publish, and start
Flink DataStream jobs. It also supports O&M management as well as monitoring and alerting
features.

Important
Only Blink 3.2.2 and later versions of Realtime Compute for Apache Flink in
exclusive mode supports Flink DataStream.
Flink DataStream does not support storage resource registration, job debugging, or
configuration optimization for Flink SQL jobs.
If the upstream and downstream storage systems that Flink DataStream jobs
access use a whitelist mechanism, you must configure whitelists. For more
information, see Configure a whitelist for accessing storage resources.
Flink DataStream jobs supported by Realtime Compute for Apache Flink are
developed based on the open source Flink version. For more information, see Open
source Flink version.
Blink DataStream APIs are compatible with open source Flink 1.5. Flink DataStream
jobs and connectors that are developed based on Flink 1.5 can run properly on
Blink. Blink DataStream APIs may not be compatible with other open source Flink
versions.

Flink DataStream enables Realtime Compute for Apache Flink to call underlying API
operations to help you flexibly use Realtime Compute for Apache Flink.

Flink DataStream Developer Guide includes the following topics:
Job development
This topic describes how to develop, publish, and start a Flink DataStream job in Realtime
Compute for Apache Flink.
Monitoring and alerting
This topic describes how to create and apply alert rules. Monitoring and alerting are
supported only for the failover rate metric.

7.Blink Datastream
Development Guide
7.1. Overview

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink Datastr
eam Development Guide

Blink

550 > Document Version: 20231114

https://github.com/apache/flink/tree/blink

By default, a newly created database instance does not allow access from IP addresses that
are not included in its whitelists. To allow Realtime Compute for Apache Flink to access the
database instance, you must add the IP addresses of Realtime Compute for Apache Flink to a
whitelist of the database instance. This topic describes how to add the IP addresses of
Realtime Compute for Apache Flink to a whitelist of an ApsaraDB for RDS instance.

IP addresses to be added to the whitelist
To access storage resources from a Realtime Compute for Apache Flink cluster in exclusive
mode, you only need to add the IP addresses of the ENI to the whitelist. To view the IP
addresses of the ENI, perform the following steps:

1. Log on to the .
2. Move the pointer over the username in the upper-right corner.
3. In the drop-down list, click Project Management.
4. In the left-side navigation pane, click Clusters.
5. On the Clusters page, click the name of the target cluster.
6. In the cluster information dialog box, view the ENI of the cluster.

Configure a whitelist for an ApsaraDB for RDS instance
When you reference an ApsaraDB for RDS database in Realtime Compute for Apache Flink,
Realtime Compute for Apache Flink needs to frequently read and write data in the ApsaraDB
for RDS database. In this case, you must add the IP addresses of Realtime Compute for
Apache Flink to a whitelist of the ApsaraDB for RDS instance. For more information, see
Configure an IP address whitelist for an ApsaraDB RDS for MySQL instance.

In a DataStream job, you can obtain custom parameters from the main function as needed.

Method to obtain and set custom parameters
To obtain a custom parameter from the main function, define the custom parameter in the
format of paramName=paramValue in a DataStream job.

 paramName : the name of the custom parameter.
 paramValue : the value of the custom parameter.

Note You can define multiple custom parameters in a DataStream job.

Example of obtaining and setting custom parameters

Note After you set blink.job.name=jobnametest on the development page, you
can use the following code to assign the jobnametest string to the jobName variable.

7.2. Configure a whitelist for
accessing storage resources

7.3. Set custom parameters

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink Datastr

eam Development Guide

> Document Version: 20231114 551

https://www.alibabacloud.com/help/en/rds/apsaradb-rds-for-mysql/configure-an-ip-address-whitelist-for-an-apsaradb-rds-for-mysql-instance

import org.apache.flink.api.java.utils.ParameterTool;
import java.io.StringReader;
import java.nio.charset.StandardCharsets;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.Properties;

public class getParameterExample {
 public static void main(String[] args)throws Exception {
 final String jobName;
 final ParameterTool params = ParameterTool.fromArgs(args);

 /*You must enter configFile to read parameters in configFile. */
 String configFilePath = params.get("configFile");

 /*Create a Properties object to save parameter values that you set in the syste
m. */
 Properties properties = new Properties();

 /*Load parameter values that you set in the system to the Properties object. */
 properties.load(new StringReader(new
String(Files.readAllBytes(Paths.get(configFilePath)), StandardCharsets.UTF_8)));

 /*Obtain the jobName parameter. */
 jobName = (String) properties.get("blink.job.name");
 }
}

Note The preceding example only demonstrates how to obtain and use custom
parameters in the main function. To use custom parameters in a Flink operator, you must
add the following code to the preceding code to convert custom parameters to global job
parameters. Then, you can obtain the corresponding parameters in a Flink operator by
using the getproperty method of the Configuration class.
env.getConfig().setGlobalJobParameters(ParameterTool.fromPropertiesFile(configFilePath)
);

This topic describes monitoring and alerts in Realtime Compute for Apache Flink and how to
create an alert rule.

Introduction to CloudMonitor
CloudMonitor helps you collect the monitoring metrics of Alibaba Cloud resources or custom
monitoring metrics, check service availability, and configure alert rules based on these
monitoring metrics. This service helps you view Alibaba Cloud resource usage, business
running information, and service health status. In addition, this service allows you to receive
and respond to alerts in a timely manner to ensure that applications are running as expected.

View monitoring metrics
1. Log on to the Realtime Compute for Apache Flink console.

7.4. Monitoring

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink Datastr
eam Development Guide

Blink

552 > Document Version: 20231114

https://stream.console.aliyun.com

2. In the top navigation bar, click Administration.
3. On the Administration page, click the name of the job whose monitoring metrics you want

to view.
4. In the upper-right corner of the Job Administration page, move the pointer over the More

icon and click Monitor.
5. On the page that appears, view the monitoring metrics of the job.

Create an alert rule
For more information about how to create an alert rule, see Cloud service monitoring.

Note
The failover rate is the average number of failovers per second in the last minute.
For example, if one failover occurred in the last minute, the failover rate is 0.01667
(1/60 = 0.01667).
If you use a connector provided by the open source Flink during the development
of a Flink DataStream job, the monitoring metrics service latency, read RPS, and
write RPS are not displayed in the CloudMonitor console.

This topic describes the POM dependency used to develop DataStream jobs, example of
DataStream job development, and DataStream connectors.

Important
Only Blink 3.2.2 and later versions of Realtime Compute for Apache Flink in
exclusive mode supports Flink DataStream.
We recommend that you use a Maven project of IntelliJ IDEA to develop a
DataStream job.
To avoid JAR dependency conflicts, take note of the following points:

Select the Blink version on the Development page the same as the Blink
version of POM dependencies.
Specify <scope>provided</scope> for Blink-related dependencies.
Use the Shade plug-in to package other third-party dependencies. For more
information, see Apache Maven Shade plug-in.

POM dependency
Add a POM dependency based on the Blink version of the job that is running. The following
example shows the POM file used for Blink 3.4.0.
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.alibaba.blink</groupId>
 <artifactId>blink-datastreaming</artifactId>
 <version>1.0-SNAPSHOT</version>

7.5. Develop a job

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink Datastr

eam Development Guide

> Document Version: 20231114 553

https://www.alibabacloud.com/help/en/cms/user-guide/cloud-service-monitoring
https://maven.apache.org/plugins/maven-shade-plugin/index.html
https://search.maven.org/search?q=com.alibaba.blink

 <properties>
 <scala.version>2.11.12</scala.version>
 <scala.binary.version>2.11</scala.binary.version>
 <blink.version>blink-3.4.0</blink.version>
 <maven.compiler.source>1.8</maven.compiler.source>
 <maven.compiler.target>1.8</maven.compiler.target>
 </properties>

 <dependencies>
 <dependency>
 <groupId>com.alibaba.blink</groupId>
 <artifactId>flink-streaming-java_${scala.binary.version}</artifactId>
 <version>${blink.version}</version>
 <scope>provided</scope>
 </dependency>

<!-- Add test framework-->
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.8.1</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.scala-lang</groupId>
 <artifactId>scala-library</artifactId>
 <version>2.11.12</version>
 </dependency>

<!-- Add logging framework-->
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-log4j12</artifactId>
 <version>1.7.7</version>
 <scope>runtime</scope>
 </dependency>
 <dependency>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 <version>1.2.17</version>
 <scope>runtime</scope>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-shade-plugin</artifactId>
 <version>3.2.0</version>
 <executions>
 <execution>

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink Datastr
eam Development Guide

Blink

554 > Document Version: 20231114

 <execution>
 <goals>
 <goal>shade</goal>
 </goals>
 <configuration>
 <transformers>
 <transformer
implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
 <manifestEntries>
 <Main-Class>your main class</Main-Class>
 <X-Compile-Source-JDK>${maven.compiler.source}</X
-Compile-Source-JDK>
 <X-Compile-Target-JDK>${maven.compiler.target}</X
-Compile-Target-JDK>
 </manifestEntries>
 </transformer>
 </transformers>
 <relocations combine.self="override">
 <relocation>
 <pattern>XXX</pattern>
 <shadedPattern>shaded.XXX</shadedPattern>
 </relocation>
 </relocations>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</project>

Note If you want to use Snapshot, you can add the POM dependency based on your
Snapshot version.

DataStream connectors
The following DataStream connectors are added to Blink 3.2:

Kafka
Kafka (open source version)
HBase (open source version)
JDBC
RDS SINK
Elasticsearch
MongoDB
Redis

Note Some DataStream connectors have been open-sourced. For more
information, see alibaba-flink-connectors.

7.6. Publish a job

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink Datastr

eam Development Guide

> Document Version: 20231114 555

https://oss.sonatype.org/content/repositories/snapshots/com/alibaba/blink/flink-core/
https://github.com/alibaba/alibaba-flink-connectors

This topic describes how to publish a DataStream job.

Prerequisites
A Realtime Compute for Apache Flink project is created.

Important
Only Blink 3.2.2 and later of Realtime Compute for Apache Flink in exclusive mode
supports Flink DataStream. We recommend that you use Blink 3.4.0 or later.
DataStream jobs do not support resource configuration optimization or the setting
of a start offset. For Blink versions earlier than 3.4.0, we recommend that you use
the default configurations when you publish and start a job.

Procedure
1. Log on to the Realtime Compute for Apache Flink console. In the top navigation bar, click

Development.
2. On the Development page, click the Create File icon.
3. In the Create File dialog box, configure job parameters.

Parameter Description

File Name The name of the custom job. The file name must be unique in the
current project.

File Type

The type of the job. Set it to FLINK_STREAM / DATASTREAM.

Note You must set File Type to FLINK_STREAM /
DATASTREAM for both DataStream jobs and Table API jobs.

Storage Path The path where the job is stored.

4. In the left-side navigation pane, click the Resources tab.
5. On the Resources tab, click Create Resource. In the dialog box that appears, configure

required parameters, upload the JAR package of the developed DataStream job, and then
click OK.

Note The maximum size of the JAR package that can be uploaded is 300 MB. If
the JAR package exceeds 300 MB, you must upload it to the Object Storage Service
(OSS) bucket that is bound to your cluster or use APIs to upload it.

6. In the left-side navigation pane, find the uploaded package, click More in the Actions
column, and click Reference.

7. On the Development page for the job, configure required parameters.

blink.main.class=<Complete main class name>
-- The complete function class name, for example,
com.alibaba.realtimecompute.DemoTableAPI.
blink.job.name=<Job name>
-- For example, datastream_test.
blink.main.jar=<Resource name of the JAR package of the complete main class name>
-- Resource name of the JAR package of the complete main class name, for example, bli
nk_datastream.jar.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink Datastr
eam Development Guide

Blink

556 > Document Version: 20231114

https://stream-ap-southeast-3.console.aliyun.com

blink.main.class and blink.job.name are required. Make sure that the value of
blink.job.name is the same as the file name you entered in Step 3. If they are different,
the file name you entered in Step 3 is used.
You must set the blink.main.jar parameter when you upload multiple JAR packages.
You can configure other parameters as required and then reference them in Realtime
Compute for Apache Flink. For more information about how to configure custom
parameters and how to obtain parameter values from the code.
Do not use spaces when you configure parameters.
In Blink 3.2.0 and later versions, you do not need to set the directory where the
checkpoint file is stored. The system automatically generates the directory.
In Blink 3.4.0 and later versions, the parameter configurations in the code of the JAR
package take precedence over the parameter configurations in Realtime Compute for
Apache Flink. For example:

If the statebackend parameter is configured both in custom parameters and the code
of the JAR package, the configuration of this parameter in the code of the JAR package
is used.
If the statebackend parameter is not configured in custom parameters and the code
of the JAR package, the default parameter niagara statebackend in the job template
of the Realtime Compute for Apache Flink development platform is used.

Note Exercise caution when you delete default parameters from the job
template. If you delete the default parameters, checkpoint generation and fault
tolerance for the job may fail. The blink.job.name parameter is an exception. The
job name configured in env.execute("jobname") in the code will be replaced with
the job name that you configured when you create the job. This ensures that the
value of the blink.job.name parameter is consistent with the job name you
configured. The job names in metrics that include custom metrics must also be the
same as the job names you configured when you create the jobs.

8. Publish the job.
Blink versions earlier than 3.4.0

a. Configure resources.
Specify the resource configuration mode as required. We recommend that you use the
default configuration if you start the job for the first time.

Note Realtime Compute for Apache Flink supports manual resource
configuration. For more information, see Optimize performance by manual
configuration.

b. Check data.
Check parameter settings and click Next.

c. Publish the job.
Click Publish.

Blink 3.4.0 and later
a. Click Publish.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink Datastr

eam Development Guide

> Document Version: 20231114 557

b. Specify Resource Configuration Method.
Code Configuration: uses the resource configurations in the code. This resource
configuration method is consistent with that used by the open source Flink.
Manual: uses the resource configurations that are manually adjusted on the
Resource Configuration page.

a. In the right side of the Development page, click the Configurations tab. Then,
choose Configurations > Reacquire Configuration.

b. Modify the configurations as required.
c. Choose Configurations > Apply to save the configurations.

Note During manual configuration, the resource configurations in the code
take precedence over those displayed on the Realtime Compute for Apache Flink
development platform. For example, if the resources of some operators are
configured in the code, the configurations of the resources of these operators on
the Realtime Compute for Apache Flink development platform become invalid.
During job running, the resource configurations of the operators in the code are
used. For resource configurations that are not displayed in the code, the
configurations displayed on the Realtime Compute for Apache Flink development
platform are used.

c. Click Next to check the setting or click Skip Check.
d. Click Publish.

9. On the Administration page, find the target job and click Start in the Actions column.

This topic describes how to run a Flink DataStream job to read data from DataHub.

Prerequisites
Java Development Kit (JDK) 8 is installed on your on-premises machine.
Maven 3.x is installed on your on-premises machine.
An integrated development environment (IDE) for Java or Scala is installed on your on-
premises machine. We recommend that you use IntelliJ IDEA. The JDK and Maven are
configured.
A topic is created in DataHub, and test data exists in the topic.

Note The test data must contain four fields, whose data types are STRING,
STRING, DOUBLE, and BIGINT in sequence.

datahub-demo-master is downloaded.

Background information
Windows OS and macOS are used in this demo.

Important Only Blink 3.X supports this demo.

7.7. Develop a job
7.8. Example of DataStream jobs
7.8.1. Read data from DataHub

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink Datastr
eam Development Guide

Blink

558 > Document Version: 20231114

https://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/159298/cn_zh/1585122460234/datahub_input.csv
https://github.com/RealtimeCompute/datahub-demo

Develop a job
1. DataStream of Realtime Compute for Apache Flink is compatible with Apache Flink 1.5.2.

Download and decompress flink-1.5.2-compatible to your on-premises machine.

Note datahub-connector in the downloaded file functions as the DataHub sink.
For more information, see DatahubSinkFunction.java and
DatahubSinkFunctionExample.java in the downloaded file.

2. In the command window, go to the alibaba-flink-connectors-flink-1.5.2-compatible
directory and run the following command:

mvn clean install

The following figure shows the command results.

If the command is successfully run, the Java Archive (JAR) package that corresponds to
datahub-connector is installed in the Maven repository on your on-premises machine. By
default, the package is saved in the .m2 folder under the folder of the current logon user.

3. Run the following command to check whether the package datahub-connector-0.1-
SNAPSHOT-jar-with-dependencies.jar exists. This package contains a JAR package and
its dependent third-party JAR packages, which will be used in subsequent operations.

Windows OS

dir C:\Users\Username\.m2\repository\com\alibaba\flink\datahub-connector\0.1-SNAPSH
OT

Figure 1. Command results in the Windows OS

macOS

ls /Users/Username/.m2/repository/com/alibaba/flink/datahub-connector/0.1-SNAPSHOT

4. In IntelliJ IDEA, choose File > Open to open the decompressed package datahub-demo-
master. Then, double-click pom.xml to view the code.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink Datastr

eam Development Guide

> Document Version: 20231114 559

https://github.com/alibaba/alibaba-flink-connectors/tree/flink-1.5.2-compatible

Important
When you perform local debugging for IDE, you must comment out
<scope>provided</scope>.
In this example, <classifier>jar-with-dependencies</classifier> in
datahub-connector-0.1-SNAPSHOT-jar-with-dependencies.jar in Step 3 is
used by default.

5. Modify DataHub-related parameters in the DatahubDemo.java file.

private static String endPoint = "inner endpoint";// Indicates access over an interna
l network.
//private static String endPoint ="public endpoint";// Indicates access over the Inte
rnet. If you have entered an internal endpoint, you do not need to enter the public e
ndpoint.
private static String projectName = "yourProject";
private static String topicSourceName = "yourTopic";
private static String accessId = "yourAK";
private static String accessKey = "yourAS";
private static Long datahubStartInMs = 0L;// Set the time that corresponds to the sta
rt offset.

6. Go to the directory where the pom.xml file is saved and run the following command to
package the file:

mvn clean package

A JAR package named blink-datastreaming-1.0-SNAPSHOT.jar appears in the
destination directory, based on the artifactId parameter that you configured in the
pom.xml file for your project. This indicates that job development is complete.

Publish a job
For more information about how to publish a job, see Publish a job.

Important Before you publish a job, set the Parallelism parameter for the source
table on the Configurations tab of the Development page. The parallelism setting of
the source table cannot be greater than the number of shards in the source table.
Otherwise, a JobManager error occurs after the job starts.

The following example shows the job content:

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink Datastr
eam Development Guide

Blink

560 > Document Version: 20231114

-- The complete main class name, such as com.alibaba.realtimecompute.DatastreamExample.
This field is required.
blink.main.class=com.alibaba.blink.datastreaming.DatahubDemo

-- The name of the job.
blink.job.name=datahub_demo

-- The resource name of the JAR package that contains the complete main class name, suc
h as blink_datastream.jar.
blink.main.jar=${Resource name of the JAR package that contains the complete main class
name}

-- The default state backend configuration. This field takes effect when the job code i
s not explicitly configured.
state.backend.type=niagara
state.backend.niagara.ttl.ms=129600000

-- The default checkpoint configuration. The configuration takes effect when the job co
de is not explicitly configured.
blink.checkpoint.interval.ms=180000

Note
Modify blink.main.class and blink.job.name as required.
You can configure custom parameters. For more information, see Set custom
parameters.

Verify the test results
On the Container Log tab of the Job Administration page, view information in the
taskmanager.out file of the sink node. In this example, the type of the sink node is print.
If the information shown in the following figure appears, Realtime Compute for Apache Flink
has read data from DataHub.

FAQ
If an error similar to the following error appears when a job is running, a JAR package conflict
occurs. What do I do?

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink Datastr

eam Development Guide

> Document Version: 20231114 561

java.lang.AbstractMethodError:
com.alibaba.fastjson.support.jaxrs.FastJsonAutoDiscoverable.configure(Lcom/alibaba/blink/sh
aded/datahub/javax/ws/rs/core/FeatureContext;)

We recommend that you use the relocation feature of maven-shade-plugin to resolve the
JAR package conflict.
<relocations combine.self="override">
 <relocation>
 <pattern>org.glassfish.jersey</pattern>

<shadedPattern>com.alibaba.blink.shaded.datahub.org.glassfish.jersey</shadedPattern>
 </relocation>
</relocations>

This topic describes how to run a Flink DataStream job to read data from Message Queue for
Apache Kafka.

Prerequisites
Java Development Kit (JDK) 8 is installed on your on-premises machine.
Maven 3.x is installed on your on-premises machine.
An integrated development environment (IDE) for Java or Scala is installed on your on-
premises machine. We recommend that you use IntelliJ IDEA. The JDK and Maven are
configured.
A Message Queue for Apache Kafka instance that resides in the same virtual private cloud
(VPC) as your Realtime Compute for Apache Flink cluster in exclusive mode is created. A
topic and a consumer group are created.

Background information
DataStream of Realtime Compute for Apache Flink is compatible with Apache Kafka 1.5.2.
Message Queue for Apache Kafka is compatible with Apache Kafka. Therefore, you can
directly use the Kafka connector in the Maven repository to access Message Queue for
Apache Kafka.
Realtime Compute for Apache Flink in exclusive mode accesses Message Queue for Apache

7.8.2. Read data from Message Queue for
Apache Kafka

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink Datastr
eam Development Guide

Blink

562 > Document Version: 20231114

Kafka over a VPC. Simple Authentication and Security Layer (SASL) authentication is not
required. If you access Message Queue for Apache Kafka over the Internet in your IDE, SASL
authentication is required. For more information about the configurations of Message
Queue for Apache Kafka, see kafka-java-demo.

Important Only Blink 3.X supports this demo.

Develop a job
1. Download and decompress alikafka-demo-master to your on-premises machine.
2. In IntelliJ IDEA, choose File > Open to open the decompressed package alikafka-demo-

master.
3. Double-click kafka.properties under the \alikafka-demo-master\src\main\resources

directory to open the file. Then, change the values of the parameters bootstrap.servers,
topic, and group.id to the values of the created Message Queue for Apache Kafka
instance.

Endpoints, which are obtained from the Message Queue for Apache Kafka console.

You can enter public and VPC endpoints for the bootstrap.servers parameter. Howeve
r, if you use Realtime Compute for Apache Flink in exclusive mode, you must enter VPC
endpoints.
bootstrap.servers=ip1:port,ip2:port,ip3:port

The topic, which is created in the Message Queue for Apache Kafka console.
topic=your_topic

The consumer group, which is created in the Message Queue for Apache Kafka console
.
group.id=your_groupid

4. Go to the directory where the pom.xml file is stored. Then, run the following command to
package the file:

mvn clean package

A Java Archive (JAR) package named blink-datastreaming-1.0-SNAPSHOT.jar appears
in the target directory, based on the artifactId parameter that you configured in the
pom.xml file for your project. This indicates that job development is complete.

Publish a job
For more information about how to publish a job, see Publish a job.

Note Modify the configurations of blink.main.class, blink.job.name, and
blink.main.jar as required.

The following example shows the job content:

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink Datastr

eam Development Guide

> Document Version: 20231114 563

https://github.com/AliwareMQ/aliware-kafka-demos/tree/master/kafka-java-demo
https://github.com/RealtimeCompute/alikafka-demo

-- The complete main class name, such as com.alibaba.realtimecompute.DatastreamExample.
This field is required.
blink.main.class=com.alibaba.blink.datastreaming.AliKafkaConsumerDemo

-- The name of the job.
blink.job.name=alikafkaconsumerdemo

-- The resource name of the JAR package that contains the complete main class name, suc
h as blink_datastream.jar.
blink.main.jar=blink-datastreaming-1.0-snapshot.jar

-- The default state backend configuration. This field takes effect when the job code i
s not explicitly configured.
state.backend.type=niagara
state.backend.niagara.ttl.ms=129600000

-- The default checkpoint configuration. The configuration takes effect when the job co
de is not explicitly configured.
blink.checkpoint.interval.ms=180000

Note You can configure custom parameters. For more information, see Set custom
parameters.

Verify the test results
1. Send messages to Realtime Compute for Apache Flink in the Message Queue for Apache

Kafka console.
2. On the Job Administration page, view information in the taskmanager.out file of the

sink node. In this example, the type of the sink node is print.
If information similar to that shown in the following figure appears, Realtime Compute for
Apache Flink has read data from Message Queue for Apache Kafka. The information
depends on the messages sent from the Message Queue for Apache Kafka console.

This topic describes how to run a Flink DataStream job to read data from DataHub and write
data to ApsaraDB for HBase.

Prerequisites
Java Development Kit (JDK) 8 is installed on your on-premises machine.
Maven 3.x is installed on your on-premises machine.

7.8.3. Read data from DataHub and write
data to ApsaraDB for HBase

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink Datastr
eam Development Guide

Blink

564 > Document Version: 20231114

An integrated development environment (IDE) for Java or Scala is installed on your on-
premises machine. We recommend that you use IntelliJ IDEA. The JDK and Maven are
configured.
A topic is created in DataHub, and test data exists in the topic.

Note
The test data must contain three fields, whose data types are BOOLEAN, STRING, and
STRING in sequence.

An ApsaraDB for HBase cluster is created. The ApsaraDB for HBase cluster resides in the
same region and the same virtual private cloud (VPC) as your Realtime Compute for Apache
Flink cluster in exclusive mode. A table with several column families is created in the
ApsaraDB for HBase cluster. To use Shell to access ApsaraDB for HBase,see Use HBase
Shell to access ApsaraDB for HBase Standard Edition clusters.

Note
ApsaraDB for HBase Standard Edition is used in this topic.
You must add the IP address of your Realtime Compute for Apache Flink cluster
to a whitelist of ApsaraDB for HBase.

Background information
The Windows OS is used in this demo.

Important
Only Blink 3.X supports this demo.

Develop a job
1. Download and decompress the Hbase_Demo-master.zip package to your on-premises

machine.
2. In IntelliJ IDEA, choose File > Open to open the decompressed package Hbase_Demo-

master.
3. Double-click the HbaseDemo.java file in the \Hbase_Demo-master\src\main\java directory.

Then, configure the parameters related to DataHub and ApsaraDB for HBase in the
HbaseDemo.java file.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink Datastr

eam Development Guide

> Document Version: 20231114 565

https://www.alibabacloud.com/help/en/apsaradb-for-hbase/latest/use-hbase-shell-to-access-apsaradb-for-hbase-standard-edition-clusters
https://github.com/RealtimeCompute/Hbase_Demo

// Configure the parameters related to DataHub.
//private static String endPoint ="public endpoint";// Access DataHub over the Intern
et. If you enter an internal endpoint, you do not need to enter the public endpoint.
private static String endPoint = "inner endpoint";// Access DataHub over an internal
network.
private static String projectName = "yourProject";
private static String topicSourceName = "yourTopic";
private static String accessId = "yourAK";
private static String accessKey = "yourAS";
private static Long datahubStartInMs = 0L;// Set the time that corresponds to the sta
rt offset.
// Configure the parameters related to ApsaraDB for HBase.
private static String zkQuorum = "yourZK";
private static String tableName = "yourTable";
private static String columnFamily = "yourcolumnFamily";

4. Go to the directory where the pom.xml file is stored. Then, run the following command to
package the file:

mvn package -Dcheckstyle.skip

A Java Archive (JAR) package named Hbase_Demo-1.0-SNAPSHOT-shaded.jar appears
in the target directory, based on the artifactId parameter that you configured in the
pom.xml file for your project. This indicates that job development is complete.

Publish a job
For more information about how to publish a job, see Publish a job.

Note
Before you publish the job, set the Parallelism parameter for the source table on the
Configurations tab of the Development page. The parallelism setting of the source
table cannot be greater than the number of shards in the source table. Otherwise, a
JobManager error occurs after the job starts.

The following example shows the job content:

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink Datastr
eam Development Guide

Blink

566 > Document Version: 20231114

-- Required. The full name of the main class.
blink.main.class=Hbase_Demo.HbaseDemo

-- The name of the job.
blink.job.name=datahub_demo

-- The resource name of the JAR package that contains the full name of the main class.
If multiple JAR packages exist, you must specify this parameter.
--blink.main.jar=Hbase_Demo-1.0-snapshot.jar

-- The default state backend configuration. This field takes effect when the job code i
s not explicitly configured.
state.backend.type=niagara
state.backend.niagara.ttl.ms=129600000

-- The default checkpoint configuration. The configuration takes effect when the job co
de is not explicitly configured.
blink.checkpoint.interval.ms=180000

Note
You can configure custom parameters. For more information, see Set custom parameters.

Verify the test results
1. Send test data to DataHub in the Realtime Compute for Apache Flink console.

CREATE TABLE kafka_src (
 a BOOLEAN
) WITH (
 type = 'random'
);

CREATE TABLE event_logs (
 `a` BOOLEAN,
 b VARCHAR,
 `c` VARCHAR
) WITH (
 type = 'datahub',
 endPoint = '<yourEndpoint>',
 project = '<yourProject>',
 topic = '<yourTopic>',
 accessId='<yourAccessId>',
 accessKey='<yourAccessKey>'
);

INSERT INTO event_logs
SELECT
 a,'rowkey3' as b,'123' as c
FROM kafka_src;

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink Datastr

eam Development Guide

> Document Version: 20231114 567

2. Connect to the ApsaraDB for HBase cluster.For more information about how to connect to
an ApsaraDB for HBase cluster, see Use HBase Shell to access ApsaraDB for HBase Standard
Edition clusters.

3. Run the scan 'hbase_sink' command to query the data written to ApsaraDB for HBase.
If information similar to that in the following figure appears, Realtime Compute for Apache
Flink writes the DataHub data to ApsaraDB for HBase.

FAQ
If an error similar to the following one appears when a job is running, a JAR package conflict
occurs. What do I do?

java.lang.AbstractMethodError:com.alibaba.fastjson.support.jaxrs.FastJsonAutoDiscoverable.c
onfigure(Lcom/alibaba/blink/shaded/datahub/javax/ws/rs/core/FeatureContext;)

We recommend that you use the relocation feature of maven-shade-plugin to resolve the
JAR package conflict.

<relocations combine.self="override">
 <relocation>
 <pattern>org.glassfish.jersey</pattern>

<shadedPattern>com.alibaba.blink.shaded.datahub.org.glassfish.jersey</shadedPattern>
 </relocation>
</relocations>

This topic describes how to run a Flink DataStream job to read data from Log Service.

Prerequisites
Java Development Kit (JDK) 8 is installed on your on-premises machine.
Maven 3.x is installed on your on-premises machine.

7.8.4. Read data from Log Service

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink Datastr
eam Development Guide

Blink

568 > Document Version: 20231114

https://www.alibabacloud.com/help/en/apsaradb-for-hbase/latest/use-hbase-shell-to-access-apsaradb-for-hbase-standard-edition-clusters

An integrated development environment (IDE) for Java or Scala is installed on your on-
premises machine. We recommend that you use IntelliJ IDEA. The JDK and Maven are
configured.
A Logstore is created in Log Service, and test data exists in the Logstore.

Background information
Windows OS is used in this demo.

Important Only Blink 3.X supports this demo.

Develop a job
1. Download and decompress the SLS_Demo-master.zip package to your on-premises

machine.
2. In IntelliJ IDEA, choose File > Open to open the decompressed SLS_Demo-master folder.
3. Double-click the ConsumerSample.java file in the \SLS_Demo-

master\src\main\java\com\aliyun\openservices\log\flink directory. Then, configure the
parameters related to Log Service in the ConsumerSample.java file.

 private static final String SLS_ENDPOINT = "VPC endpoint";// Use the classic netw
ork endpoint or a virtual private cloud (VPC) endpoint in the production environment.
// private static final String SLS_ENDPOINT = "public endpoint";// Use the public en
dpoint in the test environment.
 private static final String ACCESS_KEY_ID = "yourAK";
 private static final String ACCESS_KEY_SECRET = "yourAS";
 private static final String SLS_PROJECT = "yourProject";
 private static final String SLS_LOGSTORE = "yourlogstore";
 // 1. Specify the start offset, which indicates the timestamp to start reading da
ta from Log Service. The timestamp is measured in seconds. 2. To read both full and i
ncremental data from Log Service, set the StartInMs parameter to
Consts.LOG_BEGIN_CURSOR.
 // 3. To read only incremental data from Log Service, set the StartInMs parameter
to Consts.LOG_END_CURSOR.
 private static final String StartInMs = Consts.LOG_END_CURSOR;

Note You must comment out <scope>provided</scope> when you perform local
debugging in your IDE.

4. Go to the directory where the pom.xml file is stored. Then, run the following command to
package the file:

mvn clean package

A Java Archive (JAR) package named flink-log-connector-0.1.21-SNAPSHOT.jar appears
in the target directory, based on the artifactId parameter that you configured in the
pom.xml file for your project. This indicates that job development is complete.

Publish a job
For more information about how to publish a job, see Publish a job.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink Datastr

eam Development Guide

> Document Version: 20231114 569

https://github.com/RealtimeCompute/SLS_Demo

Note Before you publish the job, set the Parallelism parameter for the source table
on the Configurations tab of the Development page. The parallelism setting of the
source table cannot be greater than the number of shards in the source table. Otherwise,
a JobManager error occurs after the job starts.

The following example shows the job content:
-- Required. The full name of the main class.
--blink.main.class=com.aliyun.openservices.log.flink.ConsumerSample

-- The name of the job.
blink.job.name=sls

-- The resource name of the JAR package that contains the full name of the main class.
If multiple JAR packages exist, you must specify this parameter.
--blink.main.jar=flink-log-connector-0.1.21-snapshot.jar

-- The default state backend configuration. This field takes effect when the job code i
s not explicitly configured.
state.backend.type=niagara
state.backend.niagara.ttl.ms=129600000

-- The default checkpoint configuration. The configuration takes effect when the job co
de is not explicitly configured.
blink.checkpoint.interval.ms=180000

Note You can configure custom parameters. For more information, see Set custom
parameters.

Verify the test results
On the Container Log tab of the Job Administration page, view information in the
taskmanager.out file of the sink node. In this example, the type of the sink node is print.
If information shown in the following figure appears, Realtime Compute for Apache Flink
reads the data from Log Service.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Blink Datastr
eam Development Guide

Blink

570 > Document Version: 20231114

This topic provides a use case of Gegejia, a partner of Realtime Compute for Apache Flink, to
describe how to use Realtime Compute for Apache Flink to create real-time page view (PV)
and unique visitor (UV) curves.

Background information
As the new retail industry rises, competition in the Internet e-commerce industry is becoming
increasingly fierce. Real-time data is particularly important to the e-commerce industry, such
as collecting statistics on the total PVs and UVs to a website.

Example
Business architecture

Workflow
i. The SDK provided by DataHub synchronizes binary logs to DataHub.
ii. Realtime Compute for Apache Flink subscribes to data in DataHub for real-time

computing.
iii. Realtime Compute for Apache Flink writes real-time data to ApsaraDB RDS.
iv. Alibaba Cloud DataV or other data visualization service presents the result data.

8.Best Practices
8.1. Best practices of Realtime
Compute in the e-commerce
industry
8.1.1. Real-time PV and UV curves in e-
commerce scenarios

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Best Practice

s

> Document Version: 20231114 571

Preparations Table 1. Fields in a log source table

Field Data type Description

account_id VARCHAR The user ID.

client_ip VARCHAR The IP address of the client.

client_info VACHAR The model of the device.

platform VARHCAR The operating system type of
the device.

imei VARCHAR
The International Mobile
Equipment Identity (IMEI)
number of the device.

version BIGINT The operating system version
of the device.

action BIGINT The page redirection
description.

gpm VARCHAR The tracking path.

c_time VARCHAR The time at which the request
was made.

target_type VARCHAR The type of requested data.

target_id VARCHAR The ID of requested data.

udata VARCHAR The extended information.

session_id VARHCAR The session ID

product_id_chain VARHCAR The string of product IDs.

cart_product_id_chain VARCHAR The ID string of the products
added to the cart.

tag VARCHAR The special tag.

position VARCHAR The location of the user.

network VARCHAR The network type of the user.

p_dt VARCHAR The time-based partition, in
days.

p_platform VARCHAR The partition system version.

Table 2. Fields in an ApsaraDB RDS result table

Field Data type Description

summary_date BIGINT The date on which the
statistics are collected.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Best Practice
s

Blink

572 > Document Version: 20231114

summary_min VARCHAR The minute at which the
statistics are collected.

pv BIGINT The number of clicks on the
specified website.

uv BIGINT

The number of visitors who
click the specified website.

Note Only one UV
is counted for multiple
clicks by the same visitor
within one day.

currenttime TIMESTAMP The current system time.

Business logic

// Create an order source table.
CREATE TABLE source_ods_fact_log_track_action (
 account_id VARCHAR, // The ID of the user.
 client_ip VARCHAR, // The IP address of the client.
 client_info VARCHAR, // The model of the device.
 platform VARCHAR, // The operating system type of the dev
ice.
 imei VARCHAR, // The IMEI number of the device.
 `version` VARCHAR, // The operating system version of the
device.
 `action` VARCHAR, // The page redirection description.
 gpm VARCHAR, // The tracking path.
 c_time VARCHAR, // The time at which the request was ma
de.
 target_type VARCHAR, // The type of the requested data.
 target_id VARCHAR, // The ID of the requested data.
 udata VARCHAR, // The extended information in the JSON
format.
 session_id VARCHAR, // The ID of the session.
 product_id_chain VARCHAR, // The ID string of products.
 cart_product_id_chain VARCHAR, // The ID string of the products added
to the cart.
 tag VARCHAR, // The special tag.
 `position` VARCHAR, // The location of the user.
 network VARCHAR, // The network type of the user.
 p_dt VARCHAR, // The time-based partition, in days.
 p_platform VARCHAR // The partition system version.
) WITH (
 type='datahub',
 endPoint='yourEndpointURL',
 project='yourProjectName',
 topic='yourTopicName',
 accessId='yourAccessId',
 accessKey='yourAccessSecret',
 batchReadSize='1000'
);

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Best Practice

s

> Document Version: 20231114 573

);

CREATE TABLE result_cps_total_summary_pvuv_min (
 summary_date bigint, // The date on which the statistics are collecte
d.
 summary_min varchar, // The minute at which the statistics are colle
cted.
 pv bigint, // The number of clicks on the specified website
.
 uv bigint, // The number of visitors who click the specifie
d website. Only one UV is counted for multiple clicks by the same visitor within one
day.
 currenttime timestamp, // The current system time.
 primary key (summary_date,summary_min)
) WITH (
 type= 'rds',
 url = 'yourRDSDatabaseURL',
 userName = 'yourDatabaseUserName',
 password = 'yourDatabasePassword',
 tableName = 'yourTableName'
);

CREATE VIEW result_cps_total_summary_pvuv_min_01 AS
select
cast(p_dt as bigint) as summary_date // The time-based partition, in days.
,count(client_ip) as pv // Count the number of PVs by the client IP address.
,count(distinct client_ip) as uv // Count the number of UVs by deduplicating client I
P addresses.
,cast(max(c_time) as TIMESTAMP) as c_time // The time at which the request was made
.
from source_ods_fact_log_track_action
group by p_dt;

INSERT into result_cps_total_summary_pvuv_min
select
a.summary_date, // The time-based partition, in days.
cast(DATE_FORMAT(c_time,'HH:mm') as varchar) as summary_min, // Obtain the time stri
ng representing the hour and minute.
a.pv,
a.uv,
CURRENT_TIMESTAMP as currenttime // The current system time.
from result_cps_total_summary_pvuv_min_01 AS a
;

Key points
To help you understand structured code and facilitate code maintenance, we recommend
that you use views to split the business logic into two modules. For more information about
views, see Create a data view.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Best Practice
s

Blink

574 > Document Version: 20231114

Module 1

CREATE VIEW result_cps_total_summary_pvuv_min_01 AS
select
cast(p_dt as bigint) as summary_date // The time-based partition, in days.
,count(client_ip) as pv // Count the number of PVs by client IP address.
,count(distinct client_ip) as uv // Count the number of UVs by deduplicating visito
rs.
,cast(max(c_time) as TIMESTAMP) as c_time // The time at which the request was ma
de.
from source_ods_fact_log_track_action
group by p_dt;

PV is the number of clicks after a customer visits the website, and UV is the number of
unique visitors after customer IP addresses are deduplicated.
cast(max(c_time) as TIMESTAMP) specifies the time at which the last request was
made.
p_dt is used as the time-based partition, and the unit is day. max(c_time) is used as
the deadline for visiting a website, and a PV and UV are inserted into the database.

Table 3. Result

p_dt pv uv max(c_time)

2017-12-12 1000 100 2017-12-12
9:00:00

2017-12-12 1500 120 2017-12-12
9:01:00

2017-12-12 2200 200 2017-12-12
9:02:00

2017-12-12 3300 320 2017-12-12
9:03:00

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Best Practice

s

> Document Version: 20231114 575

Module 2

INSERT into result_cps_total_summary_pvuv_min
select
a.summary_date, // The time-based partition, in days.
cast(DATE_FORMAT(c_time,'HH:mm') as varchar) as summary_min, // Obtain the time st
ring that represents the hour and minute.
a.pv,
a.uv,
CURRENT_TIMESTAMP as currenttime // The current system time.
from result_cps_total_summary_pvuv_min_01 AS a;

Extract the data from module 1 by hour and minute and obtain the PV and UV growth
curves,

Example and source code
Based on the PV and UV curve solution described in this topic, Alibaba Cloud creates a demo
that includes a complete link for you. You can use this demo to register upstream and
downstream storage resources and obtain your PV and UV curves. You can click sample code
to download the complete demo. Take note of the following two points when you use this
demo to register upstream and downstream storage resources:

Use a DataHub table as the source table.
Create an ApsaraDB RDS result table.

This topic describes how to use Realtime Compute for Apache Flink to filter users who meet
the conditions for issuing marketing coupons in a coupon-based marketing policy.

Background information
A merchant uses a marketing policy of refund coupons at Double 11. After the consumption
amount of a user reaches a specified value, the merchant issues a refund coupon with a
specific amount to the user to promote more consumption. Realtime Compute for Apache
Flink monitors the consumption amount of users in real time and filters users who meet the
conditions for issuing refund coupons.

8.1.2. Marketing coupons in e-commerce
scenarios

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Best Practice
s

Blink

576 > Document Version: 20231114

https://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/160581/cn_zh/1585880063555/UV%25E6%259B%25B2%25E7%25BA%25BFDEMO.sql

Solution
SQL structure

Source tables

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Best Practice

s

> Document Version: 20231114 577

Create a source table to store orders generated by the e-commerce system.

Note The order data format is simplified to focus on the core logic. Only the
attributes related to the use case are retained.

CREATE TABLE dwd_tb_trd_pay_ri(
 biz_order_id VARCHAR, -- 'Order ID'
 auction_id VARCHAR, -- 'Product ID'
 auction_title VARCHAR, -- 'Product title'
 buyer_id VARCHAR, -- 'ID of the buyer'
 buyer_nick VARCHAR, -- 'Nickname of the buyer'
 pay_time VARCHAR, -- 'Payment time of the order'
 gmt_create VARCHAR, -- 'Time at which the order was created'
 gmt_modified VARCHAR, -- 'Time at which the order was modified'
 biz_type VARCHAR, -- 'Transaction type'
 pay_status VARCHAR, -- 'Payment status'
 `attributes` VARCHAR, -- 'Flag of the order'
 from_group VARCHAR, -- 'Source of the order'
 div_idx_actual_total_fee DOUBLE --'Transaction amount'
) WITH (
 type='datahub',
 endPoint='http://dh-cn-hangzhou.aliyun-inc.com',
 project='yourProjectName',-- 'Name of your project'
 topic='yourTopicName',--'Name of your topic'
 roleArn='yourRoleArn',-- 'Alibaba Cloud Resource Name (ARN) of your role'
 batchReadSize='500'
);

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Best Practice
s

Blink

578 > Document Version: 20231114

Create a source table of returns.

Note The order data format is simplified to focus on the core logic. Only the
attributes related to the use case are retained.

CREATE TABLE dwd_tb_trd_rfd_ri(
 biz_order_id VARCHAR, -- 'Order ID'
 auction_id VARCHAR, -- 'Product ID'
 auction_title VARCHAR, -- 'Product title'
 buyer_id VARCHAR, -- 'ID of the buyer'
 buyer_nick VARCHAR, -- 'Nickname of the buyer'
 pay_time VARCHAR, -- 'Payment time of the order'
 gmt_create VARCHAR, -- 'Time at which the order was created'
 gmt_modified VARCHAR, -- 'Time at which the order was modified'
 biz_type VARCHAR, -- 'Transaction type'
 pay_status VARCHAR, -- 'Payment status'
 `attributes` VARCHAR, -- 'Flag of the order'
 from_group VARCHAR, -- 'Source of the order'
 refund_fee DOUBLE -- 'Refund amount'
) WITH (
 type='datahub',
 endPoint='http://dh-cn-hangzhou.aliyun-inc.com',
 project='yourProjectName', --'Your project'
 topic='yourTopicName', --'Your topic'
 roleArn='yourRoleArn', --'ARN of your role'
 batchReadSize='500'
);

Result tables
Execute the following statements to create an ApsaraDB RDS result table:

CREATE TABLE tddl_output(
 gmt_create VARCHAR, --'Time at which the order was created'
 gmt_modified VARCHAR, --'Time at which the order was modified'
 buyer_id BIGINT, --'ID of the buyer'
 cumulate_amount BIGINT, --'Transaction amount'
 effect_time BIGINT, --'Payment time of the order'
 primary key(buyer_id,effect_time)
) WITH (
 type= 'rds',
 url = 'yourDatabaseURL', --'URL of your database'
 tableName = 'yourTableName', --'Name of your table'
 userName = 'yourUserName', --'Your username'
 password = 'yourDatabasePassword' --'Your password'
);

Business logic
Perform the UNION ALL operation to join the order table and table of returns to obtain
information about all purchased items and collect the actual consumption amount and
details of users.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Best Practice

s

> Document Version: 20231114 579

CREATE VIEW dwd_tb_trd_and_rfd_pay_ri
AS
SELECT
*
FROM(
 (SELECT
 `a`.biz_order_id biz_order_id,
 `a`.auction_id auction_id,
 `a`.auction_title auction_title,
 `a`.buyer_id buyer_id,
 `a`.buyer_nick buyer_nick,
 `a`.pay_time pay_time,
 `a`.gmt_create gmt_create,
 `a`.gmt_modified gmt_modified,
 `a`.biz_type biz_type,
 `a`.pay_status pay_status,
 `a`.`attributes` `attributes`,
 `a`.from_group,
 `a`.div_idx_actual_total_fee div_idx_actual_total_fee
 FROM
 dwd_tb_trd_pay_ri `a`
)
 UNION ALL
 (
 SELECT
 `b`.biz_order_id biz_order_id,
 `b`.auction_id auction_id,
 `b`.auction_title auction_title,
 `b`.buyer_id buyer_id,
 `b`.buyer_nick buyer_nick,
 `b`.pay_time pay_time,
 `b`.gmt_create gmt_create,
 `b`.gmt_modified gmt_modified,
 `b`.biz_type biz_type,
 `b`.pay_status pay_status,
 `b`.`attributes` `attributes`,
 `b`.from_group,
 `b`.refund_fee div_idx_actual_total_fee --The refund amount, which is a
negative value.
 FROM
 dwd_tb_trd_rfd_ri `b`
)
);

Deduplication
A large amount of duplicate data such as product IDs and product names may exist in the
order table and return table. Use the MIN function to obtain parameter values only in the
first generated record of each order and filter out other data. Then, group data by order ID
and payment status to obtain required product IDs and product names.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Best Practice
s

Blink

580 > Document Version: 20231114

CREATE VIEW filter_hxhb_dwd_tb_trd_and_rfd_pay_ri_distinct AS
SELECT
 biz_order_id biz_order_id,
 pay_status pay_status,
 MIN(auction_id) auction_id,
 MIN(auction_title) auction_title,
 MIN(buyer_id) buyer_id,
 MIN(buyer_nick) buyer_nick,
 MIN(pay_time) pay_time,
 MIN(gmt_create) gmt_create,
 MIN(gmt_modified) gmt_modified,
 MIN(biz_type) biz_type,
 MIN(attributes) attributes,
 MIN(div_idx_actual_total_fee) div_idx_actual_total_fee
FROM
 dwd_tb_trd_and_rfd_pay_ri
GROUP BY biz_order_id ,pay_status;

Data aggregation

CREATE VIEW ads_tb_trd_and_rfd_pay_ri AS
SELECT
 MIN(gmt_create) gmt_create, --'Time at which the order was created'
 MAX(gmt_modified) gmt_modified, --'Time at which the order was last modified'
 CAST (buyer_id AS BIGINT) buyer_id, --'ID of the buyer'
 CAST (date_format(pay_time , 'yyyy-MM-dd HH:mm:ss' , 'yyyyMMdd') AS BIGINT) as eff
ect_time, --'Payment time'
 SUM(CAST(div_idx_actual_total_fee/100 AS BIGINT)) cumulate_amount --'Transaction
amount'
FROM
 filter_hxhb_dwd_tb_trd_and_rfd_pay_ri_distinct
GROUP BY
 buyer_id,date_format(pay_time , 'yyyy-MM-dd HH:mm:ss' , 'yyyyMMdd');

Q: Why are the MAX and MIN functions used?

 MIN(gmt_create) gmt_create, --'Time at which the order was created'
 MAX(gmt_modified) gmt_modified, --'Time at which the order was last modified'

A: MIN(gmt_create) obtains the time at which an order was created.
MAX(gmt_modified) obtains the time at which the order was last modified. You can use
MAX and MIN to obtain the time values based on the business logic of orders.

Note If the time field is not of the BIGINT type, use the related built-in functions
to convert the data type. For more information, see Built-in functions.

Data insertion into ApsaraDB RDS
Insert the statistical data into the ApsaraDB RDS result table. Then, use appropriate push
software to issue coupons with the correct refund amount to users who meet the specified
conditions.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Best Practice

s

> Document Version: 20231114 581

INSERT INTO tddl_output
SELECT
 gmt_create,
 gmt_modified,
 buyer_id,
 cumulate_amount,
 effect_time
from ads_tb_trd_and_rfd_pay_ri
where cumulate_amount>0;

Q: Why is the "cumulate_amount>0" clause used?

cumulate_amount>0

A: This clause filters out the amount of the returned products involved in the preceding
UNION ALL operation.

Summary
Q: How do I obtain the data I need from a large number of records about orders and return
orders?
A: In actual transaction situations, a large number of order records and return records are
generated. You can perform the UNION ALL operation to join two or more tables as one large
table. Then, deduplicate and aggregate the records based on your specific business logic.
Finally, write the actual transaction amounts of all orders of each user into the result table to
prepare for issuing coupons.

Demo example and source code
Based on the marketing refund solution described in this topic, Alibaba Cloud creates a demo
that includes a complete process for you.

Use a DataHub table as the source table.
Create an ApsaraDB RDS result table.

You can refer to this demo to register upstream and downstream storage resources and
develop your marketing refund solutions. Click the demo code to download it.

This topic provides a use case to describe how to use Realtime Compute to implement real-
time situation awareness and geographic distribution of orders.

Background
Real-time situation awareness and geographic order distribution help enterprises optimize the
allocation and release of product categories in a timely manner. The following use case
describes how a food e-commerce enterprise uses Realtime Compute to implement real-time
situation awareness and geographic distribution of orders.

Use case

8.1.3. Real-time situation awareness and
geographic distribution of orders in e-
commerce scenarios

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Best Practice
s

Blink

582 > Document Version: 20231114

http://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/114415/cn_zh/1555312580637/%25E8%2590%25A5%25E9%2594%2580%25E7%25BA%25A2%25E5%258C%2585DEMO.sql

Note To focus on the core logic, we simplify the order data format to retain only
the attributes related to the use case.

Create multiple tables to store data.
In the e-commerce system, orders and shipping addresses are separately stored. A buyer
can use multiple shipping addresses to place orders. No shipping address is specified when
an order is created. The specific shipping address can be obtained only when the order is
submitted. The shipping address table stores city IDs (specified by city_id). You also need to
create a city table to store the geographic information about cities. We create these tables
to collect statistics on the distribution of orders (GMV) in different regions by day.

Create an order table.

CREATE TABLE source_order (
 id VARCHAR, // The ID of the order.
 seller_id VARCHAR, // The ID of the seller.
 account_id VARCHAR, // The ID of the buyer.
 receive_address_id VARCHAR, // The ID of the shipping address.
 total_price VARCHAR, // The order amount.
 pay_time VARCHAR, // The payment time of the order.
) WITH (
 type='datahub',
 endPoint='http://dh-cn-hangzhou.aliyun-inc.com',
 project='yourProjectName', // Your project name.
 topic='yourTopicName', // Your topic name.
 roleArn='yourRoleArn', // Your role ARN.
 batchReadSize='500'
);

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Best Practice

s

> Document Version: 20231114 583

Create a shipping address table.

CREATE TABLE source_order_receive_address (
 id VARCHAR, // The ID of the shipping address.
 full_name VARCHAR, // The full name of the consignee.
 mobile_number VARCHAR, // The mobile number of the consignee.
 detail_address VARCHAR, // The detailed shipping address.
 province VARCHAR, // The province in the shipping address.
 city_id VARCHAR, // The city in the shipping address.
 create_time VARCHAR // The time when the order was created.
) WITH (
 type='datahub',
 endPoint='http://dh-cn-hangzhou.aliyun-inc.com',
 project='yourProjectName', // Your project name.
 topic='yourProjectName', // Your topic name.
 roleArn='yourProjectName', // Your role ARN.
 batchReadSize='500'
);

Create a city table.

CREATE TABLE dim_city (
 city_id varchar,
 city_name varchar, // The name of the city.
 province_id varchar, // The ID of the province to which the city belongs.
 zip_code varchar, // The postal code.
 lng varchar, // The longitude of the city.
 lat varchar, // The latitude of the city.
 PRIMARY KEY (city_id),
 PERIOD FOR SYSTEM_TIME // Specify that this is a dimension table.
) WITH (
 type= 'rds',
 url = 'yourDatabaseURL', // Your database URL.
 tableName = 'yourTableName', // Your table name.
 userName = 'yourDatabaseName', // Your username.
 password = 'yourDatabasePassword' // Your password.
);

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Best Practice
s

Blink

584 > Document Version: 20231114

Collect statistics on the distribution of orders (GMV) in different regions by day.

CREATE TABLE result_order_city_distribution (
 summary_date bigint, // The date when the statistics are collected.
 city_id bigint, // The ID of the city.
 city_name varchar, // The name of the city.
 province_id bigint, // The ID of the province to which the city belongs.
 gmv double, // The GMV.
 lng varchar, // The longitude of the city.
 lat varchar, // The latitude of the city.
 primary key (summary_date,city_id)
) WITH (
 type= 'rds',
 url = 'yourDatabaseURL', // Your database URL.
 tableName = 'yourTableName', // Your table name.
 userName = 'yourDatabaseName', // Your username.
 password = 'yourDatabasePassword' // Your password.
);

Edit business logic.

 insert into result_order_city_distribution
 select
 d.summary_date
 ,cast(d.city_id as BIGINT)
 ,e.city_name
 ,cast(e.province_id as BIGINT)
 ,d.gmv
 ,e.lng
 ,e.lat
 ,e.lnglat
 from
 (
 select
 DISTINCT
 DATE_FORMAT(a.pay_time,'yyyyMMdd') as summary_date
 ,b.city_id as city_id
 ,round(sum(cast(a.total_price as double)),2) as gmv
 from source_order as a
 join source_order_receive_address as b on a.receive_address_id =b.id
 group by DATE_FORMAT(a.pay_time,'yyyyMMdd'),b.city_id
 // Join the order table with the shipping address table and compute the sale
s distribution by date and city ID.
)d join dim_city FOR SYSTEM_TIME AS OF PROCTIME() as e on d.city_id = e.city_id
 // Join the dimension table to complete the geographic information about cities and
obtain the final computing result.
 ;

This topic describes how to use Realtime Compute to obtain the latest transaction records.

8.1.4. Latest transaction records in e-
commerce scenarios

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Best Practice

s

> Document Version: 20231114 585

Background
The order transaction table of an e-commerce merchant may contain operation records about
the same order at different times. For example, the order transaction table records a user's
operations such as modifying the quantity of the product to be ordered and returning the
product. The merchant only wants to obtain valid transaction records. The following section
describes how to use Realtime Compute to obtain the latest transaction records.

Procedure
Syntax

SELECT col1, col2, col3
FROM (
 SELECT col1, col2, col3
 ROW_NUMBER() OVER ([PARTITION BY col1[, col2..]]
 ORDER BY col1 [asc|desc][, col2 [asc|desc]...]) AS rownum
 FROM table_name)
WHERE rownum <= N [AND conditions]

Parameter Description

 ROW_NUMBER() The OVER window function used to compute the
number of a row. The value starts from 1.

 PARTITION BY col1[, col2..] The columns by which you want to partition the
table. This parameter is optional.

 ORDER BY col1 [asc|desc][, col2
[asc|desc]...]

The columns by which you want to sort your
data. You can specify different orders for
multiple columns.

Examples
Test data

id (BIGINT) TIME (VARCHAR) VALUE (BIGINT)

1 1517898096 5

1 1517887296 44

1 1517872896 32

2 1517872896 10

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Best Practice
s

Blink

586 > Document Version: 20231114

Test statements

create table source_table (
 id BIGINT,
 `TIME` VARCHAR,
 `VALUE` BIGINT
)with(
 type='datahub',
 endPoint='yourEndpointURL',
 project='yourProjectName',
 topic='yourTableName',
 accessId='yourAccessId',
 accessKey='yourAccessSecret'
);
CREATE TABLE result_table (
 id BIGINT,
 `TIME` VARCHAR,
 `VALUE` BIGINT
) WITH (
 type= 'rds',
 url = 'yourRDSDatabaseURL',
 userName = 'yourDatabaseName',
 password = 'yourDatabasePassword',
 tableName = 'yourTableName'
);
INSERT INTO result_table
SELECT id,`TIME`,`VALUE`
FROM (
 SELECT *,
 ROW_NUMBER() OVER (PARTITION BY id ORDER BY `TIME` desc) AS rownume
 FROM
 source_table
)
WHERE rownume <= 1
;

Test results

id (BIGINT) TIME (VARCHAR) VALUE (BIGINT)

1 1517898096 5

2 1517872896 10

Key points

SELECT id,`TIME`,`VALUE`
FROM (
 SELECT *,
 ROW_NUMBER() OVER (PARTITION BY id ORDER BY `TIME` desc) AS rownume
 FROM
 source_table
)
WHERE rownume <= 1

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Best Practice

s

> Document Version: 20231114 587

Some orders in the order table have multiple records generated at different times. To
obtain only the last generated record for each order, use row_number() OVER (PARTITION BY
id ORDER BY TIME DESC) to group records by order ID and sort the records in each group in
descending order of time. The computing result lists the sequential numbers (which are
continuous and unique in a group) of sorted records in each group. The first record in each
group is the last generated record of the corresponding order.

This topic provides a use case to describe how to use Realtime Compute for Apache Flink to
monitor core video metrics.

Background information
As the Internet technologies evolve, live streaming, especially the live streaming ecological
chain, attracts more and more attention. Live streaming allows viewers to watch various
videos, such as sports events, major events, and news, online and in real time over the
Internet.
Poor user experience leads to a loss of users. Therefore, live streaming platforms must focus
on the following points:

Quality of experience (QoE) of casters and audiences: Focus on system metrics, such as
frame freezing rate of video or audio signals, delay rate, and packet loss rate.
Timeliness: Identify issues related to the system in real time, and locate the issues in
advance.
Overall customer operation of the website: track user trends and identify popular videos

This topic provides a use case to describe how to use Realtime Compute for Apache Flink to
monitor the system stability and the operations of a live streaming platform.

Description
To build a highly interactive social community and cover more live streaming scenarios to
realize more profit, a platform operator can take the following actions:

Hire multiple casters for its live streaming website.
Allow each caster to stream to audiences in a channel.
Allow users to watch the video of the caster in the current channel and hear the voice of the
caster.
Allow each caster to invite multiple audiences in a channel to a private chat.

Figure 1. Workflow

8.2. Best practices of Realtime
Compute in the live streaming
industry
8.2.1. Core video metric monitoring for live
streaming

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Best Practice
s

Blink

588 > Document Version: 20231114

1. Casters and audiences use a live streaming app that sends streaming data to the
server every 10 seconds.

2. After the server receives data from the app, the server saves the data to its local
disk. Alibaba Cloud Log Service then collects the data from the server.

3. Realtime Compute for Apache Flink subscribes to the data on Log Service.
4. Realtime Compute for Apache Flink analyzes live streaming data.

Business objectives
Obtain the following metrics based on the tracked logs sent from the client app:

Channel faults, including frame freezing, frame drop, and out of synchronization between
the audio and video signals
Average end-to-end latency collected by region
Overall frame freezing rate collected in real time (Number of online users who encounter
frame freezing/Total number of online users × 100%. This metric can be used to measure
the scope of users who encounter frame freezing.)
Average number of frame freezing times per user (Total number of times online frame
freezing occurs/Total number of online users. This metric can be used to measure the
overall severity of frame freezing based on frame freezing times.)

It is expected that the preceding data is calculated and written to an ApsaraDB RDS database
in real time. This way, online data and even some alerts can be displayed in reports and
dashboards.

Data format
The following table describes the data format of the tracked logs that the app client sends to
the server.

Field name Description

ip The IP address of the client.

agent The type of the client.

roomid The ID of the channel.

userid The user ID.

abytes The audio bitrate.

afcnt The number of audio frames.

adrop The number of dropped audio frames.

afts The audio timestamp.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Best Practice

s

> Document Version: 20231114 589

alat The end-to-end latency of audio frames.

vbytes The video bitrate.

vfcnt The number of video frames.

vdrop The number of dropped video frames.

vfts The video timestamp.

vlat The end-to-end latency of video frames.

ublock The number of upstream frame freezing times.

dblock The number of downstream frame freezing times.

timestamp The timestamp when a log was generated.

region The region where live streaming is performed.

Log Service uses semi-structured storage and displays the preceding fields in the following
log format:
{
 "ip": "ip",
 "agent": "agent",
 "roomid": "123456789",
 "userid": "123456789",
 "abytes": "123456",
 "afcnt": "34",
 "adrop": "3",
 "afts": "1515922566",
 "alat": "123",
 "vbytes": "123456",
 "vfcnt": "34",
 "vdrop": "4",
 "vfts": "1515922566",
 "vlat": "123",
 "ublock": "1",
 "dblock": "2",
 "timestamp": "15151922566",
 "region": "hangzhou"
}

SQL statements
Data cleansing
Declare the source table in Realtime Compute for Apache Flink.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Best Practice
s

Blink

590 > Document Version: 20231114

CREATE TABLE app_heartbeat_stream_source (
 ip VARCHAR,
 agent VARCHAR,
 roomid VARCHAR,
 userid VARCHAR,
 abytes VARCHAR,
 afcnt VARCHAR,
 adrop VARCHAR,
 afts VARCHAR,
 alat VARCHAR,
 vbytes VARCHAR,
 vfcnt VARCHAR,
 vdrop VARCHAR,
 vfts VARCHAR,
 vlat VARCHAR,
 ublock VARCHAR,
 dblock VARCHAR,
 `timestamp` VARCHAR,
 app_ts AS TO_TIMESTAMP(CAST(`timestamp` AS BIGINT)), // Specify the fields for wh
ich a watermark is generated.
 WATERMARK FOR app_ts AS withOffset(app_ts, 10000) // Add an offset of 10 seconds
to define a watermark.
) WITH (
 type ='sls',
 endPoint ='http://cn-hangzhou-corp.sls.aliyuncs.com',
 accessId ='xxxxxxxxxxx',
 accessKey ='xxxxxxxxxxxxxxxxxxxxxxxxxxxx',
 project ='xxxx',
 logStore ='app_heartbeat_stream_source',
);

For business convenience, all data is processed as the VARCHAR type in the source table.
For subsequent processing, data in the source table is cleaned for the following purposes:
i. Format conversion: Convert some data of the VARCHAR type to the BIGINT type.
ii. Business data supplement: For example, enter region-related information.

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Best Practice

s

> Document Version: 20231114 591

CREATE VIEW view_app_heartbeat_stream AS
SELECT
 ip,
 agent,
 CAST(roomid AS BIGINT),
 CAST(userid AS BIGINT),
 CAST(abytes AS BIGINT),
 CAST(afcnt AS BIGINT),
 CAST(adrop AS BIGINT),
 CAST(afts AS BIGINT),
 CAST(alat AS BIGINT),
 CAST(vbytes AS BIGINT),
 CAST(vfcnt AS BIGINT),
 CAST(vdrop AS BIGINT),
 CAST(vfts AS BIGINT),
 CAST(vlat AS BIGINT),
 CAST(ublock AS BIGINT),
 CAST(dblock AS BIGINT),
 app_ts,
 region
FROM
 app_heartbeat_stream_source;

Channel fault statistics
Use a new window every 10 minutes to collect statistics on channel faults, including frame
freezing, frame drop, and out of synchronization between the audio and video signals.

CREATE VIEW room_error_statistics_10min AS
SELECT
 CAST(TUMBLE_START(app_ts, INTERVAL '10' MINUTE) as VARCHAR) as app_ts,
 roomid,
 SUM(ublock) as ublock, // Collect statistics on the number of upstream frame free
zing times in the last 10 minutes.
 SUM(dblock) as dblock, // Collect statistics on the number of downstream frame fr
eezing times in the last 10 minutes.
 SUM(adrop) as adrop, // Collect statistics on the number of audio packets dropped
in the last 10 minutes.
 SUM(vdrop) as vdrop, // Collect statistics on the number of video packets dropped
in the last 10 minutes.
 SUM(alat) as alat, // Collect statistics on the audio latency in the last 10 minu
tes.
 SUM(vlat) as vlat, // Collect statistics on the video latency in the last 10 minu
tes.
FROM
 view_app_heartbeat_stream
GROUP BY
 TUMBLE(app_ts, INTERVAL '10' MINUTE), roomid;

Latency statistics collected by region
Collect statistics on the average end-to-end latency of audio and video data by region every
10 minutes.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Best Practice
s

Blink

592 > Document Version: 20231114

CREATE VIEW region_lat_statistics_10min AS
SELECT
 CAST(TUMBLE_START(app_ts, INTERVAL '10' MINUTE) as VARCHAR) as app_ts,
 region,
 SUM(alat)/COUNT(alat) as alat,
 SUM(vlat)/COUNT(vlat) as vlat,
FROM
 view_app_heartbeat_stream
GROUP BY
 TUMBLE(app_ts, INTERVAL '10' MINUTE), region;

Overall frame freezing rate collected in real time
Calculate the overall frame freezing rate by using the following formula: Number of online
users who encounter frame freezing/Total number of online users × 100%. This metric can
be used to measure the scope of users who encounter frame freezing.

CREATE VIEW block_total_statistics_10min AS
SELECT
 CAST(TUMBLE_START(app_ts, INTERVAL '10' MINUTE) as VARCHAR) as app_ts,
 SUM(IF(ublock <> 0 OR dblock <> 0, 1, 0)) / CAST(COUNT(DISTINCT userid) AS DOUBLE
) as block_rate, // COUNT(DISTINCT) is supported only in Blink of a version later tha
n 1.4.4.
FROM
 view_app_heartbeat_stream
GROUP BY
 TUMBLE(app_ts, INTERVAL '10' MINUTE);

Number of frame freezing times per user
Calculate the number of frame freezing times per user by using the following formula: Total
number of online frame freezing times/Total number of online users. This metric can be
used to measure the overall severity of frame freezing based on the number of times frame
freezing occurs.

CREATE VIEW block_peruser_statistics_10min AS
SELECT
 CAST(TUMBLE_START(app_ts, INTERVAL '10' MINUTE) as VARCHAR) as app_ts,
 SUM(ublock+dblock) / CAST(COUNT(DISTINCT userid) AS DOUBLE) as block_peruser, //
COUNT(DISTINCT) is supported only in Blink of a version later than 1.4.4.
FROM
 view_app_heartbeat_stream
GROUP BY
 TUMBLE(app_ts, INTERVAL '10' MINUTE);

Demo code and source code
Alibaba Cloud provides a complete demo for you based on core video metric monitoring for
live streaming described in this topic. You can refer to the demo code to register upstream
and downstream storage data and to develop your own solution to monitor core video
metrics. You can click Demo to download it. To use the demo, you must upload a CSV file as a
source table to DataHub and create an ApsaraDB RDS result table to store the result data.

This topic provides a use case to describe how to use Realtime Compute for Apache Flink to
implement digital operations for live streaming.

8.2.2. Digital operations for live streaming

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Best Practice

s

> Document Version: 20231114 593

https://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/157306/cn_zh/1584337936092/%25E8%25A7%2586%25E9%25A2%2591%25E7%259B%25B4%25E6%2592%25AD%25E8%25A7%25A3%25E5%2586%25B3%25E6%2596%25B9%25E6%25A1%2588%25E4%25B9%258B%20%25E8%25A7%2586%25E9%25A2%2591%25E6%25A0%25B8%25E5%25BF%2583%25E6%258C%2587%25E6%25A0%2587%25E7%259B%2591%25E6%258E%25A7.zip

Digital operations
This topic focuses on digital operations. You can use Realtime Compute for Apache Flink to
monitor the operating status of streaming channels, such as popular videos and user trends,
at your live streaming website in real time.

Solutions
Business objectives

Collect statistics on the total number of users and user trend at your website.
Collect statistics on the total number of users and user trend of a channel.
Collect statistics on the top 10 popular channels at your website, and top 10 popular
channels in each category.

Data format
Use the logs tracked in the client app as the raw data to collect statistics.
The following table describes the data format of the tracked logs that the client app sends
to the server.

Field name Description

ip The IP address of the client.

agent The type of the client.

roomid The ID of the channel.

userid The ID of the user.

abytes The audio bitrate.

afcnt The number of audio frames.

adrop The number of dropped audio frames.

afts The audio timestamp.

alat The end-to-end latency of audio frames.

vbytes The video bitrate.

vfcnt The number of video frames.

vdrop The number of dropped video frames.

vfts The video timestamp.

vlat The end-to-end latency of video frames.

ublock The number of upstream frame freezing times.

dblock The number of downstream frame freezing
times.

timestamp The timestamp when a log was generated.

region The region where live streaming is performed.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Best Practice
s

Blink

594 > Document Version: 20231114

Log Service uses semi-structured storage and displays the preceding fields in the following
log format:

{
 "ip": "ip",
 "agent": "agent",
 "roomid": "123456789",
 "userid": "123456789",
 "abytes": "123456",
 "afcnt": "34",
 "adrop": "3",
 "afts": "1515922566",
 "alat": "123",
 "vbytes": "123456",
 "vfcnt": "34",
 "vdrop": "4",
 "vfts": "1515922566",
 "vlat": "123",
 "ublock": "1",
 "dblock": "2",
 "timestamp": "1515922566",
 "region": "hangzhou"
}

SQL statements
Collect statistics on the total number of users and user trend at your website.
Use a new window every minute to collect statistics on the user trend at your website.
The statistical result of the last minute in the trend is the current total number of users at
your website.

CREATE VIEW view_app_total_visit_1min AS
SELECT
 CAST(TUMBLE_START(app_ts, INTERVAL '1' MINUTE) as VARCHAR) as app_ts,
 COUNT(DISTINCT userid) as app_total_user_cnt
FROM
 view_app_heartbeat_stream
GROUP BY
 TUMBLE(app_ts, INTERVAL '1' MINUTE);

Collect statistics on the total number of users and user trend of a channel.
Similarly, use a new window every minute to collect statistics on the user trend of a
channel. The statistical result of the last minute in the trend is the current total number of
users of the channel.

CREATE VIEW view_app_room_visit_1min AS
SELECT
 CAST(TUMBLE_START(app_ts, INTERVAL '1' MINUTE) as VARCHAR) as app_ts,
 roomid as room_id,
 COUNT(DISTINCT userid) as app_room_user_cnt
FROM
 view_app_heartbeat_stream
GROUP BY
 TUMBLE(app_ts, INTERVAL '1' MINUTE), roomid;

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Best Practice

s

> Document Version: 20231114 595

Rank the top 10 popular channels at your website.
Collect statistics on the top 10 popular channels and promote these channels on the
homepage to increase your website traffic and clicks.

CREATE VIEW view_app_room_visit_top10 AS
SELECT
 app_ts,
 room_id,
 app_room_user_cnt,
 rangking
FROM
(
 SELECT
 app_ts,
 room_id,
 app_room_user_cnt,
 ROW_NUMBER() OVER (PARTITION BY 1 ORDER BY app_room_user_cnt desc) AS
ranking
 FROM
 view_app_room_visit_1min
) WHERE ranking <= 10;

Rank the top 10 popular channels in each category.
To build a highly interactive social community and cover more live streaming scenarios to
realize more profit, a platform operator can establish diversified channels at their live
streaming website to meet the requirements of different user groups. For example,
Taobao Live covers multiple categories such as makeup, men's wear, automotive, and
fitness.
The category and channel relationship table is a mapping table that is stored in an
ApsaraDB RDS database.

CREATE TABLE dim_category_room (
 id BIGINT,
 category_id BIGINT,
 category_name VARCHAR,
 room_id BIGINT
 PRIMARY KEY (room_id),
 PERIOD FOR SYSTEM_TIME --The identifier of the dimension table.
) WITH (
 type= 'rds',
 url = 'xxxx', --The URL of your database.
 tableName = 'xxx', /--The name of your table.
 userName = 'xxx', --Your username.
 password = 'xxx' --Your password.
);

Join the dim_category_room table based on the channel ID and compute the rankings of
channels in each category.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Best Practice
s

Blink

596 > Document Version: 20231114

CREATE VIEW view_app_room_visit_1min AS
SELECT
 CAST(TUMBLE_START(app_ts, INTERVAL '1' MINUTE) as VARCHAR) as app_ts,
 roomid as room_id,
 COUNT(DISTINCT userid) as app_room_user_cnt
FROM
 view_app_heartbeat_stream
GROUP BY
 TUMBLE(app_ts, INTERVAL '1' MINUTE), roomid;

// Join the dim_category_room table based on the channel ID.
CREATE VIEW view_app_category_visit_1min AS
SELECT
 r.app_ts,
 r.room_id,
 d.category_id,
 d.category_name,
 r.app_room_user_cnt
FROM
 view_app_room_visit_1min r
JOIN
 dim_category_room d
ON
 r.room_id = d.room_id;

// Compute the rankings of channels in each category.
CREATE VIEW view_app_category_visit_top10 AS
SELECT
 app_ts,
 category_id,
 category_name,
 app_room_user_cnt,
 rangking
FROM
(
 SELECT
 app_ts,
 room_id,
 category_id,
 category_name,
 app_room_user_cnt,
 ROW_NUMBER() OVER (PARTITION BY category_id ORDER BY app_room_user_cnt
desc) AS ranking
 FROM
 view_app_category_visit_1min
) WHERE ranking <= 10;

Demo code and source code
Alibaba Cloud provides a complete demo. You can refer to the demo code to register
upstream and downstream storage data and to develop your own digital operations solution
for live streaming. When you use the demo, take note of the following items for the upstream
and downstream storage:

Blink
Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Best Practice

s

> Document Version: 20231114 597

https://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/157306/cn_zh/1584337986604/%25E8%25A7%2586%25E9%25A2%2591%25E7%259B%25B4%25E6%2592%25AD%25E8%25A7%25A3%25E5%2586%25B3%25E6%2596%25B9%25E6%25A1%2588%25E4%25B9%258B%20%25E7%259B%25B4%25E6%2592%25AD%25E6%2595%25B0%25E5%25AD%2597%25E5%258C%2596%25E8%25BF%2590%25E8%2590%25A5.zip

Upload a CSV file as a source table to DataHub.
Create an ApsaraDB RDS dimension table.
Create an ApsaraDB RDS result table.

Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Best Practice
s

Blink

598 > Document Version: 20231114

For more information about the Realtime Compute for Apache Flink Service Level Agreement
(SLA), see Alibaba Cloud Realtime Compute for Apache Flink Service Level Agreement.

9.Agreements
9.1. Realtime Compute for Apache
Flink Service Level Agreement

Blink Blink Exclusive Mode (Phased-Ou
t for Alibaba Cloud)·Agreements

> Document Version: 20231114 599

https://www.alibabacloud.com/help/zh/doc-detail/99707.htm

	1.Release notes
	1.1. Blink-3.7.10
	1.2. Blink 3.7.9
	1.3. Blink-3.7.7
	1.4. Blink-3.6.8
	1.5. Blink-3.6.5
	1.6. Blink 3.6.2
	1.7. Blink-3.6.0
	1.8. Blink-3.5.0-hotfix
	1.9. Blink 3.4.4
	1.10. Blink-3.4.3
	1.11. Blink 3.3.0
	1.12. Blink 3.2.3
	1.13. Blink 3.2.1
	1.13.1. Blink 3.2.1 release notes
	1.13.2. API compatibility report: Blink 3.2 and Flink 1.5.1
	1.13.3. Incompatible SQL items: Blink 3.0 and Blink 2.0

	2.Product Introduction
	2.1. Overview
	2.2. Development history
	2.3. Workflow
	2.4. Upstream and downstream data stores
	2.5. Product security
	2.6. Limits
	2.7. Architecture of Realtime Compute for Apache Flink in exclusive mode (phased-out)

	3.Pricing
	3.1. Billing unit
	3.2. Billing methods
	3.3. Specification selection
	3.4. Renewal
	3.4.1. Manual renewal
	3.4.2. Auto-renewal

	3.5. Change resource configurations

	4.Preparation
	4.1. Grant permissions to a RAM user
	4.2. Activate Realtime Compute for Apache Flink and create a project
	4.3. Role authorization
	4.3.1. Assign a RAM role to an account that uses Realtime Compute for Apache Flink in exclusive mode

	5.Blink SQL reference
	5.1. Overview
	5.2. Keywords
	5.3. Basic concepts
	5.3.1. Time zone
	5.3.2. Time attributes
	5.3.3. Watermark
	5.3.4. Computed column

	5.4. Data types
	5.4.1. Data type conversion
	5.4.2. Mathematical and logical operations between data types

	5.5. Create a data view
	5.6. DDL statements
	5.6.1. Overview
	5.6.2. Create a source table
	5.6.2.1. Overview of source tables
	5.6.2.2. Create an Oracle database source table
	5.6.2.3. Create a Hologres source table
	5.6.2.4. Create a Log Service source table
	5.6.2.5. Create a source table
	5.6.2.6. Create a Message Queue for Apache Kafka source table
	5.6.2.7. Create a Tablestore source table
	5.6.2.8. Create a full MaxCompute source table
	5.6.2.9. Create an incremental MaxCompute source table

	5.6.3. Create a result table
	5.6.3.1. Overview of result tables
	5.6.3.2. Create an Oracle database result table
	5.6.3.3. Create a Hologres result table
	5.6.3.4. Create an AnalyticDB for MySQL V2.0 result table
	5.6.3.5. Create a Log Service result table
	5.6.3.6. Create a result table
	5.6.3.7. Create a Tablestore result table
	5.6.3.8. Create an ApsaraDB RDS result table
	5.6.3.9. Create a MaxCompute result table
	5.6.3.10. Create an ApsaraDB for HBase result table
	5.6.3.11. Create an Elasticsearch result table
	5.6.3.12. Create a TSDB result table
	5.6.3.13. Create a Message Queue for Apache Kafka result table
	5.6.3.14. Create a HybridDB for MySQL result table
	5.6.3.15. Create an ApsaraDB RDS for SQL Server result table
	5.6.3.16. Create an ApsaraDB for Redis result table
	5.6.3.17. Create an ApsaraDB for MongoDB result table
	5.6.3.18. Create an AnalyticDB for MySQL V3.0 result table
	5.6.3.19. Create a custom result table
	5.6.3.20. Create a Phoenix5 result table
	5.6.3.21. Create an AnalyticDB for PostgreSQL result table
	5.6.3.22. Create an InfluxDB result table

	5.6.4. Create a dimension table
	5.6.4.1. Overview
	5.6.4.2. Create a Hologres dimension table
	5.6.4.3. Create a Tablestore dimension table
	5.6.4.4. Create an ApsaraDB RDS for MySQL dimension table
	5.6.4.5. Create an ApsaraDB for HBase dimension table
	5.6.4.6. Create a MaxCompute dimension table
	5.6.4.7. Create an ApsaraDB for Redis dimension table
	5.6.4.8. Create an Elasticsearch dimension table
	5.6.4.9. Create a Phoenix5 dimension table
	5.6.4.10. Create an AnalyticDB for MySQL V3.0 dimension table
	5.6.4.11. Create an Oracle database dimension table

	5.7. DML statement
	5.7.1. EMIT statements
	5.7.2. INSERT INTO statements

	5.8. Query statements
	5.8.1. SELECT statements
	5.8.2. WHERE
	5.8.3. HAVING statement
	5.8.4. GROUP BY statement
	5.8.5. JOIN statements
	5.8.6. JOIN statements for dimension tables
	5.8.7. IntervalJoin statement
	5.8.8. UNION ALL
	5.8.9. TopN
	5.8.10. GROUPING SETS clause
	5.8.11. CEP statements
	5.8.12. Deduplication statements

	5.9. Window functions
	5.9.1. Overview
	5.9.2. TUMBLE
	5.9.3. HOP
	5.9.4. SESSION
	5.9.5. OVER windows

	5.10. Built-in functions
	5.10.1. String functions
	5.10.1.1. REGEXP_EXTRACT
	5.10.1.2. REGEXP_REPLACE
	5.10.1.3. REPEAT
	5.10.1.4. REPLACE
	5.10.1.5. REVERSE
	5.10.1.6. RPAD
	5.10.1.7. SPLIT_INDEX
	5.10.1.8. STR_TO_MAP
	5.10.1.9. SUBSTRING
	5.10.1.10. TO_BASE64
	5.10.1.11. TRIM
	5.10.1.12. UPPER
	5.10.1.13. CHAR_LENGTH
	5.10.1.14. CHR
	5.10.1.15. CONCAT
	5.10.1.16. CONCAT_WS
	5.10.1.17. FROM_BASE64
	5.10.1.18. HASH_CODE
	5.10.1.19. INITCAP
	5.10.1.20. INSTR
	5.10.1.21. JSON_VALUE
	5.10.1.22. KEYVALUE
	5.10.1.23. LOWER
	5.10.1.24. LPAD
	5.10.1.25. MD5
	5.10.1.26. OVERLAY
	5.10.1.27. PARSE_URL
	5.10.1.28. POSITION
	5.10.1.29. REGEXP

	5.10.2. Mathematical functions
	5.10.2.1. Addition
	5.10.2.2. Subtraction
	5.10.2.3. Multiplication
	5.10.2.4. Division
	5.10.2.5. ABS
	5.10.2.6. ACOS
	5.10.2.7. BIN
	5.10.2.8. ASIN
	5.10.2.9. ATAN
	5.10.2.10. BITAND
	5.10.2.11. BITNOT
	5.10.2.12. BITOR
	5.10.2.13. BITXOR
	5.10.2.14. CARDINALITY
	5.10.2.15. CONV
	5.10.2.16. COS
	5.10.2.17. COT
	5.10.2.18. EXP
	5.10.2.19. E
	5.10.2.20. FLOOR
	5.10.2.21. LN
	5.10.2.22. LOG
	5.10.2.23. LOG10
	5.10.2.24. LOG2
	5.10.2.25. PI
	5.10.2.26. POWER
	5.10.2.27. RAND
	5.10.2.28. SIN
	5.10.2.29. SQRT
	5.10.2.30. TAN
	5.10.2.31. CEIL
	5.10.2.32. CHARACTER_LENGTH
	5.10.2.33. DEGREES
	5.10.2.34. MOD
	5.10.2.35. ROUND

	5.10.3. Date functions
	5.10.3.1. LOCALTIMESTAMP
	5.10.3.2. CURRENT_DATE
	5.10.3.3. CURRENT_TIMESTAMP
	5.10.3.4. DATEDIFF
	5.10.3.5. DATE_ADD
	5.10.3.6. DATE_FORMAT
	5.10.3.7. DATE_SUB
	5.10.3.8. DAYOFMONTH
	5.10.3.9. EXTRACT
	5.10.3.10. FROM_UNIXTIME
	5.10.3.11. HOUR
	5.10.3.12. LOCALTIME
	5.10.3.13. MINUTE
	5.10.3.14. MONTH
	5.10.3.15. NOW
	5.10.3.16. SECOND
	5.10.3.17. TIMESTAMPADD
	5.10.3.18. TO_DATE
	5.10.3.19. TO_TIMESTAMP
	5.10.3.20. UNIX_TIMESTAMP
	5.10.3.21. WEEK
	5.10.3.22. YEAR

	5.10.4. Logical functions
	5.10.4.1. =
	5.10.4.2. >
	5.10.4.3. >=
	5.10.4.4. <=
	5.10.4.5. <
	5.10.4.6. <>
	5.10.4.7. AND
	5.10.4.8. BETWEEN AND
	5.10.4.9. IS NOT FALSE
	5.10.4.10. IS NOT NULL
	5.10.4.11. IS NOT TRUE
	5.10.4.12. IS NOT UNKNOWN
	5.10.4.13. IS NULL
	5.10.4.14. IS TRUE
	5.10.4.15. IS UNKNOWN
	5.10.4.16. LIKE
	5.10.4.17. NOT
	5.10.4.18. NOT BETWEEN AND
	5.10.4.19. IN
	5.10.4.20. OR
	5.10.4.21. IS DISTINCT FROM
	5.10.4.22. IS NOT DISTINCT FROM
	5.10.4.23. NOT IN

	5.10.5. Conditional functions
	5.10.5.1. CASE WHEN
	5.10.5.2. COALESCE
	5.10.5.3. IF
	5.10.5.4. IS_ALPHA
	5.10.5.5. IS_DECIMAL
	5.10.5.6. IS_DIGIT
	5.10.5.7. NULLIF

	5.10.6. Table-valued functions
	5.10.6.1. GENERATE_SERIES
	5.10.6.2. JSON_TUPLE
	5.10.6.3. STRING_SPLIT
	5.10.6.4. MULTI_KEYVALUE

	5.10.7. Type conversion function
	5.10.7.1. CAST

	5.10.8. Aggregate functions
	5.10.8.1. AVG
	5.10.8.2. CONCAT_AGG
	5.10.8.3. COUNT
	5.10.8.4. FIRST_VALUE
	5.10.8.5. LAST_VALUE
	5.10.8.6. MAX
	5.10.8.7. MIN
	5.10.8.8. SUM
	5.10.8.9. VAR_POP
	5.10.8.10. STDDEV_POP

	5.10.9. Other functions
	5.10.9.1. UUID
	5.10.9.2. DISTINCT

	5.11. UDXs
	5.11.1. Overview
	5.11.2. UDF
	5.11.3. UDAF
	5.11.4. UDTF
	5.11.5. Develop a UDX by using IntelliJ IDEA

	6.Blink SQL Development Guide
	6.1. Overview
	6.2. Data storage
	6.2.1. Overview
	6.2.2. Data storage resource registration
	6.2.2.1. Register an AnalyticDB for MySQL instance
	6.2.2.2. Register a Tablestore instance
	6.2.2.3. Register an ApsaraDB for RDS instance
	6.2.2.4. Register a Log Service project

	6.2.3. Configure a whitelist for accessing storage resources

	6.3. Job development
	6.3.1. Develop a job
	6.3.2. Publish a job
	6.3.3. Start a job
	6.3.4. Suspend a job
	6.3.5. Terminate a job

	6.4. Job debugging
	6.4.1. Perform local debugging
	6.4.2. Online debugging

	6.5. Job administration
	6.5.1. Go to the Job Administration page
	6.5.2. Overview
	6.5.3. Metrics
	6.5.4. Timeline
	6.5.5. Failover
	6.5.6. Checkpoints
	6.5.7. JobManager
	6.5.8. TaskExecutor
	6.5.9. Data lineage
	6.5.10. Properties and parameters
	6.5.11. Job diagnosis

	6.6. Job optimization
	6.6.1. Overview
	6.6.2. Recommended Flink SQL practices
	6.6.3. Performance optimization by using automatic configuration
	6.6.4. Performance optimization by using auto scaling
	6.6.5. Optimize performance by manual configuration
	6.6.6. Typical backpressure scenarios and optimization ideas
	6.6.7. SQL Tuning Advisor
	6.6.7.1. Partitioned All Cache
	6.6.7.2. miniBatch and microBatch
	6.6.7.3. Cache policy
	6.6.7.4. Asynchronous mode
	6.6.7.5. APPROX_COUNT_DISTINCT
	6.6.7.6. Local-global optimization
	6.6.7.7. ROW_NUMBER OVER WINDOW
	6.6.7.8. Partial-final optimization

	6.7. Monitoring and alerting
	6.8. Customize log levels and download paths
	6.9. Manage Blink versions of a Realtime Compute for Apache Flink cluster deployed in exclusive mode
	6.10. Monitoring and alerting

	7.Blink Datastream Development Guide
	7.1. Overview
	7.2. Configure a whitelist for accessing storage resources
	7.3. Set custom parameters
	7.4. Monitoring
	7.5. Develop a job
	7.6. Publish a job
	7.7. Develop a job
	7.8. Example of DataStream jobs
	7.8.1. Read data from DataHub
	7.8.2. Read data from Message Queue for Apache Kafka
	7.8.3. Read data from DataHub and write data to ApsaraDB for HBase
	7.8.4. Read data from Log Service

	8.Best Practices
	8.1. Best practices of Realtime Compute in the e-commerce industry
	8.1.1. Real-time PV and UV curves in e-commerce scenarios
	8.1.2. Marketing coupons in e-commerce scenarios
	8.1.3. Real-time situation awareness and geographic distribution of orders in e-commerce scenarios
	8.1.4. Latest transaction records in e-commerce scenarios

	8.2. Best practices of Realtime Compute in the live streaming industry
	8.2.1. Core video metric monitoring for live streaming
	8.2.2. Digital operations for live streaming

	9.Agreements
	9.1. Realtime Compute for Apache Flink Service Level Agreement

